August 6th, 2020: All-Printed Supercapacitors for In Space Manufacturing and Terrestrial Applications
All-Printed Supercapacitors for In Space Manufacturing and Terrestrial Applications
Dr. Myeonglok Seol, NASA Ames Research Center
Aug 6, 2020, 11:30 AM – 1:30 PM : Online Check-in 11:30 AM – 12 Noon; Seminar 12 Noon – 1:30 PM
Online (Zoom) FREE Event! Register Here!
ABSTRACT
Printing technology has evolved from traditional quick writing tools to the modern
manufacturing methods for functional devices and systems. The benefits of printing-based
manufacturing include less material waste, fast-turn around prototyping due to simple
design customization and wide substrate compatibility. In this presentation, all-printed
supercapacitors, where all the components are made by printing, are introduced. Because
the device is manufactured only by printing, the complexity of manufacturing facilities can
be minimized and the resource efficiency and versatility are maximized, which are
particularly important in places where the supply of material and human resources are
limited such as rural areas, environmental monitoring of nuclear sites and space exploration
missions. We have fabricated electrical double layer capacitors and pseudocapacitors, both
with high electrochemical performance and cyclic durability and the results will be discussed
in detail.
SPEAKER BIOGRAPHY
Myeonglok Seol is currently a Scientist at the Center for Nanotechnology at NASA Ames
Research Center. He received his PhD in Electrical Engineering from Korea Advanced
Institute of Science and Technology (KAIST) in 2016. His research focuses on energy
harvesting and storage devices, printed electronics, and nanotechnology-enabled devices.
He received Future Technology Leader Award from the Engineers’ Council in 2018 and the
2018 Mike Sargeant Career Achievement Award for Young Professionals from the Institute
of Engineering and Technology, IET (UK).
Relevant citations and links
M.-L. Seol et al., All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process, ACS Applied Energy Materials, 2020, 3, 4965-4973, https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00510