SF Bay Area Nanotechnology Council

IEEE

Archive for the ‘Announcements’ Category

Probing Nanoscale Interface and Interphases in Lithium-ion Batteries

Tuesday, September 14th, 2021

About this event

Agenda:

11:30 AM – 12 Noon: Nano Journal Club*

12 Noon – 12:10 PM : Introduction and Announcements

12:10 Pm – 1:00 PM : Seminar by Jagjit Nada

*Nano Journal will discuss the paper on : Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries

Seminar Talk: Probing Nanoscale Interface and Interphases in Lithium-ion Batteries

Electrochemical energy storage (EES) is one of the key drivers for next generation mobility, consumer electronics, defense technology, and other applications. EES is also an enabler to improve penetration of renewable energies such as solar and wind into the electric grid. To meet such demands there is an increasing need for batteries to have high energy density and power without compromising on safety and affordability. Electrode-electrolyte interfaces are central to battery performance and life as the ion must travel across the device without interruption between heterogenous materials interfaces. Most liquid and solid electrolytes have limited thermodynamic stability and form a reactive interphase layer that can usually range from a few nanometers to tens of nanometer The nature and composition of such reactive interphase layer primarily determines the quality of the ion-transport at the interface. The talk will focus on investigation of solid-electrolyte interphase (SEI) on lithium-ion anodes such as silicon that is critical for the cycle and calendar life. The second part of the talk will cover solid-state batteries, where role of the solid electrolyte-electrode interfaces is critical for maintaining capacity and high-rate capability. Several important class of solid-electrolyte and their stability with Li-metal and cathodes will be presented.

Acknowledgement

This work was supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy through the Vehicle Technology Office


		Probing Nanoscale Interface and Interphases in Lithium-ion  Batteries image

Jagjit Nanda is a Distinguished Staff Scientist and Group Leader of the Energy Storage and Conversion Group at Oak Ridge National Laboratory’s Chemical Sciences Division with 18 plus years of experience in energy storage and battery materials. He also has a joint faculty appointment in the Chemical and Biomolecular Engineering Department at the University of Tennessee, Knoxville. Prior to joining Oak Ridge in 2009, Jagjit worked as a Technical Lead at the Research and Advanced Engineering Center, Ford Motor Company, MI, leading R&D projects in lithium-ion battery materials and nanomaterials for energy application. He is the co-editor of Hand Book of Solid-State Batteries-2015 along with Nancy Dudney and Willam West and has co-authored more than 150 journal and technical publications in the topic of batteries, solid-state electrolytes and electrochemical interfaces. Jagjit is a Fellow of Electrochemical Society and winner of two R&D 100 awards in the area of batteries and supercapacitors.

3D Interferometry and Nanomechanics – Electronics, Face Masks and More

Thursday, February 11th, 2021

Kurt Rubin, KLA Tencor

Tues Feb 16
     11:30 am – Sign-ins begin
     12:00 pm – Program starts
       1:30 pm – Event ends
Cost: Free, but registration is required

Register on Eventbrite: Here
     Registered attendees will receive an email with a link for the Zoom meeting

     3D optical profiling is a noncontact, high-resolution measurement and visualization technique used to measure the topography and geometry of devices and materials. Capabilities of commercial 3D interferometry systems have steadily improved; today, they can measure vertical nano- and microtopography spanning Ångstroms to many millimeters in length scale. True Color imaging, developed by KLA, provides additional understanding that is complimentary to topography. Advances in optomechanical hardware, optics, electronics, and software now make it possible to create economical precision 3D interferometric measurement systems, enabling 3D profiling to help a broader range of industrial and scientific applications.
     This talk provides an example of how the capabilities of this new generation of 3D optical measurements can be applied to the fields of printed and flexible electronics. Flexible electronics is characterized by a rich and diverse set of functions, device topographies, fabrication technologies, and various materials (conducting, insulating, dielectric, etc.), which have complex surface structures with diverse optical properties. Multiparameter printed arrays on flexible substrates can be used for sensing humidity, temperature, and mechanical strain, as well as for thermoelectric generators and many other purposes, all of which have performance dependencies upon geometry and fabrication process.
    Ultraviolet germicidal irradiation (UVGI) N95 filtering facepiece respirator (FFR) treatment is considered an effective decontamination approach to address the supply shortage of N95 FFRs during the ongoing Covid-19 pandemic. We investigated the nanomechanical and non-contact 3D optically-measured topographic properties of filtration fibers that have been exposed to different doses of UVC radiation. UVC exposure was shown to decrease both Young’s modulus (E), hardness (H) and fiber width, as measured on individual polypropylene (PP) fibers. Our results also show that the PP microfiber layer loses its strength when N95 respirators are exposed to an accumulated UVC dose during the process of decontamination, and the PP fiber width also exhibits a logarithmic decrease during UVC exposure. The nanoscale measurement results on individual fibers suggest that maximum cycles of UVC disinfection treatment should be limited due to excessive accumulated dose, which has the potential to decrease the fiber breaking strength.
     This talk will discuss examples of how optical and nanomechanical characterization can improve understanding of devices and materials, including the above topics, and more.

Read More:
     3D optical interferometry with True Color visualization advances understanding of flexible electronics
     Effect of Ultraviolet C Disinfection Treatment on the Nanomechanical and Topographic Properties of N95 Respirator Filtration Microfibers

               

     Kurt Rubin is an Applications Development Engineer at KLA Instruments where he focuses on advanced optical and electrical measurement and modeling. He has an extensive background in the invention of new optical, electrical and magnetic devices, materials and the development of new processes to fabricate them. He is an inventor of fundamental technology underlying multilayer optical storage and high-speed reversible memories. He holds 60 issued patents and degrees in physics and materials science from MIT, University of Washington and Stanford University.



TheIEEE Nanotechnology Council provides a forum for leading researchers and companies to discuss their work, along with networking opportunities for local scientists and engineers

In 2014, 2016, and again in 2019, the Nanotech Council was awarded Best Chapter for IEEE Region 6, out of of 200+ chapters in 12 states
In 2014, 2017, and again in 2019, the Council was awarded Nanotech Chapter of the Year by the IEEE Nanotech Council (worldwide)

Photos from past events posted: Here

[UPDATE – NOW VIRTUAL!] June 9th, 2020: Quantitative Plasmonic Sensing with Single-Chip Inkjet Dispense Surface Enhanced Raman Spectroscopy (ID-SERS)

Saturday, May 23rd, 2020

SFBA Nanotechnology Council is pleased to announce our first online seminar – and it’s free!

We’d also like to take a moment to appreciate our community – the Council has earned the 2019 IEEE Outstanding Chapter Santa Clara Valley, as well as the Nanotechnology Council Outstanding Chapter title worldwide. Please see the Awards page for details.  Thank you all for your support!

Now onto the talk!

——

Quantitative Plasmonic Sensing with Single-Chip Inkjet Dispense Surface Enhanced Raman Spectroscopy (ID-SERS)

Dr. Fausto D’Apuzzo, Optical Scientist, HP Labs

Tues June 9

Noon-1:30PM Pacific Time, Virtual Meeting via Zoom

Register Here ! (Note: FREE to attend, but limited to 100 attendees! Registration ends at 10AM Pacific Time June 2nd.)

drfaustoplasmonicsensing

ABSTRACT

In this talk, I will present our Laboratory work on highly-quantitative plasmonic sensing based on Surface Enhanced Raman Spectroscopy (SERS). I will first describe our nano-imprinted SERS substrate architecture and performance. Then I will show how inkjet dispensing can be used in conjunction with SERS to encode each sensor with a calibration pattern of microdroplets (~30 pico-liters), with the aim of locally calibrating sensor performance. This way, we demonstrate that Measurement Uncertainty of the SERS signal can be reduced below 2%, which to our knowledge, is a new record for plasmonic sensing platform. Furthermore, the use of inkjet dispensing in combination with Raman mapping improves assay throughput (100-fold) and reduces sample volume consumption (105-fold) in an automated and reproducible fashion. Since this approach overcomes important practical hurdles, we believe that this work reignites interest in the potential commercialization of plasmonic-based chemical sensors.

Recent paper for reference:  A Generalizable Single-Chip Calibration Method for Highly Quantitative SERS via Inkjet Dispense.

 

SPEAKER BIOGRAPHY

drfaustoheadshot

Dr. Fausto D’Apuzzo is Optical Scientist at HP Labs, working on the Life Science team. His research interests are in optics systems, plasmonics and metamaterials for bio-sensing, with a focus on Surface Enhanced Raman Spectroscopy (SERS). He started investigating plasmonic systems since his master (2011) and PhD at the University of Rome “Sapienza”, before holding a postdoc position at L. Berkeley National Labs (LBNL) studying 2D plasmonic systems with Synchrotron Nano-Spectroscopy. He interned as an Optical Engineer at ACAMP (Alberta, Canada) before joining HP Labs (2018-present) where he is developing plasmonic sensing systems for quantitative chemical analysis.

[CANCELLED] March 17th, 2020: Quantitative Plasmonic Sensing with Single-Chip Inkjet Dispense Surface Enhanced Raman Spectroscopy (ID-SERS)

Wednesday, February 26th, 2020

The following talk on Tuesday March 17, 2020 has been cancelled and will be rescheduled at a future date.

Wishing everyone good health and to stay safe during this time!

——

Quantitative Plasmonic Sensing with Single-Chip Inkjet Dispense Surface Enhanced Raman Spectroscopy (ID-SERS)

Dr. Fausto D’Apuzzo, Optical Scientist, HP Labs

Register: Here

Tues March 17
11:30am: Networking & Pizza
Noon-1PM: Seminar
Cost: $4 to $6
Location: EAG Laboratories – 810 Kifer Road, Sunnyvale

 

drfaustoplasmonicsensing

ABSTRACT

In this talk, I will present our Laboratory work on highly-quantitative plasmonic sensing based on Surface Enhanced Raman Spectroscopy (SERS). I will first describe our nano-imprinted SERS substrate architecture and performance. Then I will show how inkjet dispensing can be used in conjunction with SERS to encode each sensor with a calibration pattern of microdroplets (~30 pico-liters), with the aim of locally calibrating sensor performance. This way, we demonstrate that Measurement Uncertainty of the SERS signal can be reduced below 2%, which to our knowledge, is a new record for plasmonic sensing platform. Furthermore, the use of inkjet dispensing in combination with Raman mapping improves assay throughput (100-fold) and reduces sample volume consumption (105-fold) in an automated and reproducible fashion. Since this approach overcomes important practical hurdles, we believe that this work reignites interest in the potential commercialization of plasmonic-based chemical sensors.

Recent paper for reference:  A Generalizable Single-Chip Calibration Method for Highly Quantitative SERS via Inkjet Dispense.

 

SPEAKER BIOGRAPHY

drfaustoheadshot

Dr. Fausto D’Apuzzo is Optical Scientist at HP Labs, working on the Life Science team. His research interests are in optics systems, plasmonics and metamaterials for bio-sensing, with a focus on Surface Enhanced Raman Spectroscopy (SERS). He started investigating plasmonic systems since his master (2011) and PhD at the University of Rome “Sapienza”, before holding a postdoc position at L. Berkeley National Labs (LBNL) studying 2D plasmonic systems with Synchrotron Nano-Spectroscopy. He interned as an Optical Engineer at ACAMP (Alberta, Canada) before joining HP Labs (2018-present) where he is developing plasmonic sensing systems for quantitative chemical analysis.

SFBA Nano Wins Outstanding Chapter Award

Thursday, February 6th, 2014

Gold Ribbon canstockphoto2647524The IEEE Region 6 2014 Outstanding Chapter Award was just awarded to our own IEEE San Francisco Bay Area Nanotechnology Council Chapter. (The highest award for IEEE Chapters.)

Region 6 has 228 IEEE Chapters in 12 States. It is the largest IEEE Region and holds about 60,000 members out of the IEEE worldwide total of 430,000 members.

Many of our current Executive Committee have been helping to build this Chapter for the last 10 years and we are pleased to share this recognition with our event attendees, many of whom have participated over that entire time and also contributed in many ways.

Thank you and congratulations to us all.

Nick Massetti
2014 Chair, Executive Steering Committee