Integrated On-Chip Energy Storage Using Nano Porous-Silicon Electrochemical Capacitors
Tuesday February 17, 2015
Noon – 1 pm
Texas Instruments (TI) Auditorium E-1
2900 Semiconductor Drive
Santa Clara, CA
map
TITLE: Integrated On-Chip Energy Storage Using Nano Porous-Silicon Electrochemical Capacitors
SPEAKER: Donald. S. Gardner, Principal Engineer, Intel Corp. and IEEE Fellow
ABSTRACT:
Capacitors are favored over batteries for many energy storage applications as well as suitable to work in synergy with batteries and energy harvesting devices because they can capture energy at high rates and lower voltages, as well as provide higher power. They also don’t degrade significantly over thousands of charging cycles. These properties follow because capacitors are electrostatic devices and do not rely on chemical reactions to store energy, as batteries do. Intel researchers built and studied electrochemical (EC) capacitors based on porous-silicon (P-Si) nanostructures coated with various atomic layer deposited (ALD) films. The devices were fabricated with conventional silicon technology, opening up the potential to integrate them on a single die with silicon CMOS circuits, sensors, or energy-harvesting systems like silicon solar cells. The talk will detail how they optimized the porous-silicon nanostructure and the surface-coating processes. Some of the porous-silicon electrochemical capacitors they built that had a TiN coating, exhibited stable capacitance even after 1,000 cycles at 50 mV/sec and with an energy density one to three orders of magnitude higher than electrolytic capacitors. A short video clip demonstrating a device with 1.2 Farads of capacitance on a 100mm silicon wafer will be shown.
SPEAKER BIOGRAPHY:
Donald Gardner is currently a Principal Engineer at Intel. From 2001 until the present he created and co-developed high-frequency voltage converters that are in current use in the latest Intel “Haswell” microprocessors. He also created inductor structures using magnetic materials that met the needs of power delivery and RF circuit applications and resulted in the world’s first fully integrated voltage regulator. In addition he conceived and codeveloped electrochemical capacitor technology for energy storage. From 1991 to 2001 he invented embedded MIM capacitor structures as well as a reflow copper deposition technology.
Donald is a named inventor on 90 patents and has published 160+ electrical engineering and materials science papers in journals and conferences. He is a visiting scholar at Stanford University where he received his PhD in Electrical Engineering. He is an IEEE Fellow.
AGENDA:
- 11:30 am – Registration & light lunch (pizza & drinks)
- Noon – Presentation & Questions/Answers
- 1:00 pm – Adjourn