Fifty Years of Transformer Problems

§Teshmont

Gas Cushion Transformers

© Teshmont

Transformers Oil Preservation

The "Standard" Oil
Conservator

Function:
less O_{2} and $\mathrm{H}_{2} \mathrm{O}$ in Oil

퓨Teshmont

"Gas Cushion" Oil Preservation

Used mainly in the United States

Aim: almost no O_{2} in Oil

3 to 7 psi

퓨Teshmont

Gas Cushion (High Pressure)

With load the N_{2} pressure goes up to 7 psi

寄Teshmont

Gas Cushion pressure Change

With lower Load, as the oil falls, the N_{2} pressure
also fall and at
3 psi . the N_{2} is pressure is held by supplying fresh N_{2} from the "bottle".

ฤTeshmont

Gas (High Pressure ${ }_{(2)}$)

Above 7 psi Nitrogen vented to atmosphere

퓨Teshmont

Transformers Oil Preservation

We found that an over saturated oil by about 2 psi or more, N_{2} can come out of solution, in the form of bubbles.

주Teshmont

Winding Arrangement

The transformer used the traditional winding arrangement working radially outwards from the core to the HV. The unusual part was the "solid" H/Linsulation.

₹ V Teshmont

HV Winding with 'extra insulation'

The "solid" H / L
insulation resulted in a
HV high stress occurring on the inside of the HV, so additional crepe tape (yellow) was applied.

Partial discharge in N_{2} occurred at the back of the coil (red arrow). \& black staining was found.

© Teshmont

Insulation

The black stain was copper oxide.

Lab work reveled that the partial discharge in the N_{2} produced an amine compound, which is a derivative of Ammonia, and can dissolve copper oxide from the HV conductors.

Model for tests

© Teshmont

Insulation

The amine with Copper Oxide migrated though the crepe paper, and once diluted with the bulk oil, promptly deposited the Copper Oxide on the outside of the coils.

Not a good idea!

Bubbles in Oil

${ }^{111}$
12 mm dia spheres with 10 kV applied, in oil supersaturated with N_{2}.
Bubbles created spontaneously

〒Teshmont

"Solid": HV to LV Insulation

©TTeshmont

Grounded Shield to reduce impulse transfer to the LV

Ground Shield
© Teshmont

EE Major Insulation Design circa 1960

ПTeshmont

Leakage Flux

A leakage flux plot from the J \& P transformer book.

As transformer sizes increased, radial fluxes became more significant.

유Teshmont

Leakage Flux

There was no shorted turn.
©TTeshmont

As the leakage flux "cuts" the shield

Hence the shield has a "gap"

휴Teshmont

Developed view of the shield made using nickel-silver sheet, soldered as necessary

Dielectric losses were present because of poor impregnation

कTeshmont

Model confirmed that if dielectric loss high, very high temperatures possible

${ }^{\circ} \mathrm{C}$

©Teshmont
${ }^{\circ} \mathrm{C}$

${ }^{\circ} \mathrm{C}$

Time © i Teshmont

©TTeshmont

Nickel Silver melts at $1600{ }^{\circ} \mathrm{C}$

© Teshmont

High to Low Insulation Design

The design the
Company used at that time consisted of a
"solid" wrap of pressboard:-

For 132 kV d=1"
For 275 kV d = $21 / 4$ "
For $400 \mathrm{kV} \mathrm{d}=$??

₹ Teshmont

High to Low Insulation Design

The cause of the high power factor was found to be due to inadequate processing at site.

So we carried out RIV tests, using an ERA equipment, on all the Companied 275 kV transformers in the country.

275/132 kV Autotransformer at Iver Station (Buckinghamshire)

₹ Teshmont

HF Filter on HV Bushing

Shorting Switch

而Teshmont

High to Low Insulation Design

Where the ERA system detected Partial
Discharge (PD), the transformer was taken out of service, the oil drained, high vacuum applied and the unit refilled with de-gassed oil. Then PD testing repeated.

In each and every case the repeat test the PD was not detectable.

Bonneville Power, WA

Ferro-resonance at 500 kV

[1] 230 kV C/B at The Dalles opened

[2] 500 kV C/B at J ohn Day opened

[3] After 8 minutes GAS relay operates

[4] After another 8 minutes

500 kV Disconnect arced when opened!
〒TTeshmont

Site tests on Transformer

Site tests on Transformer

Mag. Current High

The Dalles

Current High
© Teshmont

Core de-magnetized with battery

유Teshmont

Mag. Current much reduced

The Dalles

Current much reduced
©TTeshmont

Problem solved!

Problem due to ferroresonance between parallel 500 kV line conductors

〒Teshmont

Plots of Voltage, Flux \& Mag. Current

ิTeshmont

EE Co Transformer replaced with Oerlikon unit

Ferroresonance would not occur, because Oerlikon transformer had higher noload loss!

Bonneville Power had to change their switching procedures

©Teshmont
> Refer to IEEE PES paper by Dolan, Gillies \& Kimbark included in High Power Symposium on High Power Testing, Portland Ore, I uly 1971

Ferrybridge High Current LV problem.

© Teshmont

High Current Lead Problem

The Company had supplied the 570 MVA 275 / 13.8 kV Generator Transformers for Ferrybridge Power Station.

The LV current on the LV of these transformers was 22,000 Amps.

In order to save oil the tanks were what we referred to as "form fit"

주Teshmont

"Form Fit" Transformer Tank

570 MVA Generator Transformer

©TTeshmont

High Current Lead Problem

570 MVA Generator Transformer
₹ Teshmont

High Current Loop caused a current to circulate round the tank ${ }^{8 n}$

III Tank Cover Bolts
©Teshmont

The Cover Bolts became so hot the tank / cover gasket burnt, and oil ran down the side of the tank!

〒ิTeshmont

Even with the bolts insulated, the tank flange was still too hot. So a copper bar was bolted to the underside. This bar had to go round the stiffener at the mid point. (Arrow). ${ }^{(23)}$

퓨Teshmont

A plan view the tank showing the copper bar.

ฤTeshmont

The current in the bar was proportional to load, with 1000A at 600 MVA

〒Teshmont

Ferrybridge I nadequately Cooled Tapping Coils

© Teshmont
[1] 570 MVA Generator Transformer. Conductors at the top of the bottom tapping section inadequately cooled

Solution:- Insulation cut back round most of the coils

©Teshmont

Parallel Tapping Coils

₹ Teshmont

Because of the radial component of the leakage flux the four tap sections did not share the current equally.

© Teshmont

>A re-design was required!

ㅍTeshmont

Ferrybridge Power Station

 cooling tower problem

© $\overline{\text { ®े }}$ Teshmont

Large Generator Transformer,

Circulating current in end turns

© Teshmont

Smaller End Turns

©Teshmont

CTC cables (developed view)

End turn section
Main 'body' sections

J unction between CTC cables allowed for circulating current (red)

High temperatures allowed oil to
 "breakdown", producing H_{2} plus $\mathrm{C}, \mathrm{H}_{2}$ "attacked" Cu O to produce $\mathrm{H}_{2} \mathrm{O}$ (steam)

© Teshmont

The end of the individual conductor

 strands had been broken by escaping steam, so under magnification it looked like a series of "rivers" and formed.

Tap Changer Failure

in Brazil

ㅍTeshmont

Transformer Taps

₹ V Teshmont

Tap Changer Barrier Board with one tap selected

〒Teshmont

> On arrival the epoxy barrier board was in numerous pieces.

> Assembling them as a
 jigsaw resulted in....

© Teshmont

Tapchanger Barrier Board Failure

> Products of the failure on both sides of the board, indicating mechanical failure before electrical failure

> Front

> Back
© Teshmont

Detailed Examination

> From inside the transformer tank, looking into a cooling tube showed a "tide mark"

₹ V Teshmont

On questioning, it was admitted that the valve to the conservator had been always closed

© Teshmont

$>$
 Generator Transformer Tank after LV Winding Failure and Fire

ㅍTeshmont
> Damage to Core laminations from hot plasma gas emanating from below

§Teshmont
> LV busbars of end phase, forced apart by short circuit forces

©TTeshmont

Converter transformer with the valve winding next to the core

\longleftrightarrow Short circuit forces
유Teshmont

Collapse of a converter

 transformer valve winding
©TTeshmont

The Valve Winding Collapsed into the supporting

 insulation※Teshmont

Impedance valve to tap section on partially collapsed phase lower

© Teshmont

When stripped down another phase of the transformer showed signs of initial collapse

Generator transformers, 3-phase 3-winding

षTTeshmont

Highgate Converter

transformers, 3-phase 3-winding

주Teshmont

Insulation damage inside LV

₹Teshmont

Harmonic Flux overheated end turns on LV's to over $150^{\circ} \mathrm{C}$

〒Teshmont

End of X_{1} winding

蔮Teshmont

Reference:

> Thermal problems caused by harmonic frequency leakage fluxes in 3-phase, 3 winding converter transformers
by
> Forrest \& Allard
> IEEE Transactions on Power Delivery J an 2004

Highgate Transformer on test

〒Teshmont

>Thank you for your attention

© Teshmont

