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Typical Output of an EMT Simulation

Sample responses of a four-generator power system after a
three phase fault

The amplitude of the 60 Hz voltage waveform is modulated by
the low frequency of oscillations of the rotor.
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Typical Output of a TS Simulation

Sample responses of a four-generator power system after a
three phase fault

Rotor angle of generator 2 and the rms voltage of Bus 2 show
low frequency oscillations around 1 Hz.

Transient Simulation
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Typical Output of a Small Signal Analysis

Structural Information

Oscillation modes (frequencies and corresponding
damping).

Mode Shapes of oscillation frequencies.

Participation of state variables in oscillation modes.

Observability of oscillation modes.

Controllability of oscillation modes.

Residues for input-output pairs.
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Typical Output of a Small Signal Analysis:

Participation Factors

Participation Factors show the relative participation of state
variables when a mode is excited.
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Typical Output of a Small Signal Analysis: Mode

Shape

Mode Shape shows whether the state variables are oscillating
together or not.
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Machine Models

Transient Stability and Small Signal Stability

Rotor fluxes are modelled as state variables.
Stator fluxes are NOT modelled as state variables.

Electromagnetic Transient Simulation

Rotor fluxes and stator fluxes are modelled as state
variables.

Common to both

Dynamics of the rotor and that of auxiliary controllers are
modelled using differential equations.
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Transmission Line Models

Transient Stability and Small Signal Stability

Series inductance and shunt capacitance are modelled as
constant impedances (admittances) calculated at the
nominal frequency ω0.

Electromagnetic Transient Simulation

Transmission line is modelled using differential equations
(telegraphic equations).
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Small Signal Stability: Frequency domain technique

Only accurate in the vicinity of nominal frequency.

Structural Information relevant to the system is available.

Transient Stability: Time domain technique

Only accurate in the vicinity of nominal frequency.

Large integration time step is used ⇒ simulation is fast.

Electromagnetic Transient Simulation: Time domain technique

Accurate over a wide frequency range.

Integration time step is small ⇒ simulation is slow.
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Instantaneous Current Waveform

iac = Ame
jφe jω0t = [Am cos(φ) + jAm sin(φ)]e jω0t

Am is the magnitude of the current , φ is the phase of the
current, and ω0 is the nominal system frequency.

In Rectangular Coordinates

iac = (IR + jII )e
jω0t
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Modelling a Transmission Line using Dynamic

Phasors

Series Branch

Series R-L circuit connected between nodes 1 and 2.

v12 = L
di12
dt

+ Ri12

Using the Complex rotating phasor relationships

(VR + jVI )e
jω0t = L

d(IR + jII )e
jω0t

dt
+ R(IR + jII )e

jω0t
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Assuming that the nominal system frequency (ω0) is constant

VR + jVI = L
d(IR + jII )

dt
+ (R + jω0L)(IR + jII )

Since L is in pu, (ω0/L) terms appear instead of (1/L)
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Parallel Branch
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Other Interpretations of Dynamic Phasors

d-q Components of Network Voltages and Currents

Network voltages and currents are represented by their d-q
components which are modelled as state variables.

Fourier Components of Network Voltages and Currents

Network voltages and currents are represented by their Fourier
components which are modelled as state variables.
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Power System Signals as Amplitude Modulated

Signals

If R and I components are constants

The instantaneous waveforms are sinusoidal.

If R and I components are oscillating at frequency ω

The instantaneous waveforms are amplitude modulated
waveforms with carrier frequency ω0. This results in two
sidebands of ω0 − ω and ωo + ω
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Power System Signals as Amplitude Modulated

Signals

Example

If f0 = 60 Hz and f = 5 Hz, the two sideband frequencies are
f1 = 55 Hz and f2 = 65 Hz. Both are close to 60 Hz and the
constant admittance representation of transmission network is
acceptable.

Example

If f0 = 60 Hz and f = 25 Hz, the two sideband frequencies are
f1 = 35 Hz and f2 = 85 Hz . Both are significantly different to
60 Hz and the constant admittance representation of
transmission network is NOT acceptable.
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Interactions Between Nearby HVDC Converters

A simple Network for model Validation

Two HVDC lines, ac filters, ac transmission line, and a
generator.

A pulse of magnitude of 5 % and duration 0.3s was
applied to the rectifier current controller input.
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Comparison of EMT, SS-traditional, and

SS-Dynamic Phasor Approach.
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Rotor Oscillations: SS-traditional and SS-Dynamic

Phasors give same results
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Frequency Response of the Model – EMT Vs

SS-Dynamic Phasor
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Response to a 200 Hz signal

Changes in Rectifier side DC currents for a 5 %, 200Hz
sinusoidal change of the HVDC1 rectifier side AC source
voltage (VS1).
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Participation Factors ⇒ presence of an interaction

between the two HVDC converters
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Mode Shape ⇒ state variables of the two

converters oscillate against each other
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Torsional Interactions

The CIGRE benchmark HVDC test system with some
modifications.

A synchronous generator is connected at rectifier side AC
bus to supply half of the P-Q requirement of rectifier.

S2Rectifier Inverter
S1 DC Line

Idcr IdciVcap

F1

F2

Z1 Z2

G

Generator with a 
multi-mass turbine 
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Comparison of EMT and SS-Dynamic Phasor

SS-Dynamic-Phasor provides accurate results in the frequency
range of interest

10 % change in rectifier current reference for 10 ms
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Torsional Interaction Modes

Mode Freq. D Major Participants
(Hz) (%)

A 16.24 -0.03 HVDC-Generator-Turbine
B 16.36 1.05 HVDC-Generator-Turbine
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Participating states are identified using

Participation Factors
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Current Research Work

SSR between DFIG based Wind Power Plant and series
compensated transmission lines (Hiranya).

SSI between nearby LCC-HVDC and VSC-HVDC
terminals (Kevin – MH).

SSR mitigation using FACTS controllers (TGS).

Transient Stability Simulation using Dynamic Phasors
(Rae – MH).

Chandana has developed an SSR–Small Signal Analysis
Program
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