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Abstract—RNA splicing refers to the elimination of non-
coding region on transcribed pre-messenger ribonucleic acid 
(RNA). Identifying splicing site is an essential step which can 
be used to gain novel insights of alternative splicing as well as 
splicing defects, potentially cause malfunction of protein 
resulting from mutations at splice site. In this work, we 
propose a data preprocessing step applying to RNA sequences 
and the models leveraging Convolutional Neural Network 
(CNN). The preprocessing step includes reducing sequence 
length into 40 nucleotides. CNN models recognize splice sites 
on RNA sequences. Our proposed models output the promising 
results which increase F1-score (nearly 20%) comparing with 
recent alternative approaches when testing on GWH dataset. 
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I. INTRODUCTION 
In eukaryotic cell, biological information flows from 

deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to 
protein. DNA is a sequence of four types of nucleotides: 
adenine (A), guanine (G), cytosine (C), and thymine (T). 
RNA has the same components as DNA, except Uracil (U) 
instead of thymine. To transfer genetic information to 
synthesize protein, there are three main steps: transcription, 
splicing and translation. 

During transcription, DNA is copied into a precursor 
messenger RNA (precursor-mRNA or pre-mRNA). Before 
the pre-mRNA becomes a mature messenger RNA (mRNA), 
which directs the synthesis of Protein in translation process, 
some regions on pre-mRNA are removed by splicing. The 
non-coding regions or ‘introns’ intervene between ‘exons,’ 
which is the protein-coding regions. The boundary between 
an exon and intron is referred to the ‘splice site’ (junction). 
The characteristic of exons and introns is having a 
dinucleotides GT or donor and AG or acceptor at the 
boundaries [1].  

Some RNA molecules have the capability to splice 
themselves, but some splice alternatively. The splicing 
research [2] discovered that alternative patterns of splicing 
within a single precursor-mRNA at different junctions could 
yield in a variety of mature mRNAs. Most of the alternative 
splicing is caused by a mutation of a splice site, which can 
reduce spliceosome binding specificity of that splice site or 

completely make it loss of function. The alternative splicing 
can produce different functional proteins, which could lead 
to causing abnormal states in human [3]. 

Many studies have proposed models to recognize the 
splice sites to reveal which splice sites contain a mutation 
that may cause a splicing error. One common method to 
recognize binding sites in motif sequences is called Position-
Weight-Matrix (PWM). PWM recognizes by transforming 
sequence data into a probability matrix [4]. It can be used to 
recognize simple sequence structures; however, growing 
evidence indicates that sequence specificities can be more 
accurately captured by more complex techniques [5-10]. 

Recently, machine learning (ML) and deep learning (DL) 
has become popular. One well-known and effective ML 
technique is support vector machine (SVM). Degroeve et al. 
have proposed a publicly splice site prediction tool called 
SpliceMachine [5]. They employed a linear support vector 
machine (LSVM) as a linear classifier to predict the 
boundary between an actual and pseudo splice sites. 
Similarly, Sonnenberg et al. have leveraged SVM and 
employed weighted kernel to predict the splice sites [6]. The 
more recent studies have adopted DL techniques. DL is one 
of neural networks (NNs) techniques, inspired by human 
brain neurons. In bioinformatics, DL techniques have been 
applied to many problems, including DNA-binding sites 
recognition [11]. In 2015, Lee and Yoon proposed a deep 
belief network-based methodology, which applied 
Boltzmann machines for prediction of splice sites [1]. Their 
method showed the potential of DL techniques by achieving 
better results than other alternative methods (e.g. SVM and 
Hidden Markov Model (HMM)). DeepBind [7] and 
DeepSEA [8] are state-of-the-art approaches that also 
proposed DL-based models for predicting sequence 
specificities and effects of non-coding genomic variants, 
respectively. They found that DL-based models compete 
favorably with Convolution Neural Networks (CNNs). 
Recently, SpliceRover has been introduced for RNA splice 
sites recognition by using CNNs and results showed 
promising improvement [10]. 

Back in February 2018, the School of Information 
Technology, King Mongkut’s University of Technology 
Thonburi (KMUTT) in Thailand held the First Deep 
Learning and Artificial Intelligence Winter School (DLAI1) 
[12]. The event focused on the state-of-the-art technologies 
in artificial intelligence, especially machine learning and 



deep learning. There were many well-known professors and 
industrial people who have been working on these areas. In 
addition, a competition track giving a financial data, was 
included. This December, the second of DLAI will be jointly 
organized with two international conferences. The 
competition track will use a genomic data, particularly RNA 
sequences with actual and pseudo splice sites, supported by 
Deep Genomics [13]. 

In this paper, we propose the deep learning models to 
recognize RNA splice sites by leveraging CNNs. These 
models are able to recognize actual splice sites on 40 
nucleotides of sequence length. 

In the next section, we will describe about the data and 
methodology. The results and discussion will be followed. 
We end the paper with conclusion and future works. 

 

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS  

A. Data 
We use a dataset published during the First Deep 

Learning and Artificial Intelligence Winter School (DLAI1) 
[12]. The dataset was collected, and minimum preprocessing 
was completed. It is also planned to be public for a 
competition to be held in this year. The dataset consists of 
two data files: 

• Positive Case Data. The positive case data is used 
to extract splice sites (donor and acceptor). The 
donor and acceptor files contain 223,143 and 
220,034 sequences of 40 nucleotides, respectively. 
Each sequence has a splice site in the center, GT for 
donor sequences and AG for acceptor sequences. 
The splice site will be extracted and used as cases 
for model training. 

• Negative Control Data.  The negative control data 
is obtained by extracted sequences of the same size 
of splice sites mentioned above. Those sequences 
will be from highly conserved dinucleotide regions 
that are not a splice site. Sequences of 40 
nucleotides with core dinucleotide located at the 
same position found in actual splice site sequences. 

B. Methodology 
To achieve neural network models for recognizing RNA 

splice sites, our methodology consists of three main steps as 
shown in Fig. 1. 

 

 

Fig. 1. An Overall Workflow 

1) Data Preprocessing.  Normally, CNNs receive a 
vector of numbers representing pixels in an image. 
Therefore, splice site data are processed to an appropriate 
format as an input of models. To achieve that, raw RNA 
sequences are converted into a binary matrix using a one-hot 
encoding, A, C, G, T correspond to the vector [1, 0, 0, 0], [0, 
1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] respectively.  Therefore, 
the data will be represented as an image data of resolution 

, where  is the length of an RNA sequence.  Fig. 2. 
shows an RNA sequence and a binary matrix format. 

2) Modeling. To detect patterns in RNA sequences, we 
employ neural networks and convolutional neural networks, 
including shallow and deep architectures, to our models. 
Neural networks or NNs are designed for representation of 
high-level abstraction in data. NNs consist of different 
layers, which hold the number of neurons or nodes. Each 
neuron has different parameters or weights. Typically, a 
network consists of an input layer, hidden layers and an 
output layer.  The input layer is propagated the data through 
the network, yielding intermediate results by using 
activation functions for each hidden layer. The output layer 
results a final prediction. For the complex models that are 
able to represent non-linearity, non-linear functions are 
applied to activate neurons in each layer. For example, 
Rectified Linear Unit (ReLU) [14], softmax [15] and so on. 
ReLU has been applied to most recent deep neural networks 
for each neural in hidden layers. It is the simplest non-linear 
function, which output 0 if the input is less than or equal 0, 
and raw output otherwise. In classification problems, 
softmax is typically used as an activation function in the last 
layer to generate a probability of each class. In supervised 
learning, NNs learn from the annotated training data by 
adjusting the weights based on a loss function. The loss 
function represents the difference between the predictions of 
the network and the annotated labels. However, a hidden 
layer of a NN has individual, independent weights for every 
position in the input it receives. This implies that it is not 
possible to learn to look for a particular pattern over a whole 
sequence. For that purpose, Convolutional Neural Networks 
(CNNs) were introduced. These are a kind of DL, which is 
NNs with more hidden layers, convolutional layers in this 
case. Each of these layers has a number of filters, sliding 
over the sequence and detecting patterns. Here, weights are 
stored within a filter to be shared over different positions. 
In this paper, we propose DL-based models for recognizing 
actual and pseudo RNA splice sites. We experiment with 
several neural network architectures, which are two CNN 
architectures and one shallow neural network. CNN 
architectures consist of a number of alternating 
convolutional layers, dropout and max-pooling layers. 
Dropout and max-pooling layers have been employed for 
preventing over-fitting by deactivating some neurons in 
each layer and reducing dimensionality of an input, 
respectively.  We employ ReLU as an activation function 
for every neuron. Next, they are followed by a fully-
connected layer to conclude with softmax classifier [15]. 
The classifier results a probability for class 0 and 1. The 
neural network model consists of one hidden layer, followed 
by dropout. It is ended with one fully-connected layer with 
softmax classifier.  
To construct our models, we firstly reproduce SpliceRover 
models [10], however, we find that they are not fit to our 
input. Therefore, we modify architectures and fine tuning 
hyperparameters. The exact parameters and hyperparameters 
of our topology will be described in the next section. 
Testing process is then conducted, and all results are 
described in next section. 

3) Prediction. To obtain models for RNA splice sites 
prediction, we start with training process. Training process 



is conducted on a set of RNA sequences that have been 
converted to the binary matrix. The raw data is then split by 
5-folds cross-validation. 20% of a set of training data is 
assigned to be a set of validation data. 

  

 

      (a)                 (b) 

Fig. 2. Binary Matrix of a Sequence (a) an RNA sequence transformed as a 
binary matrix and (b) the RNA sequence representing as an image. 

C. Computational Setup 
All experiments are conducted on a Google 

Colaboratory with Python 3 and GPU hardware accelerator. 
We make use of Pandas and NumPy for data preparation 
and representation. TensorFlow and Keras are used for 
constructing models, training and testing. 
 

III. RESULTS AND DISCUSSION 
To evaluate the effectiveness of the proposed models, 

we compare our approach to previous techniques. The 
benchmark methods we use are Lee and Yoon’s work and 
SpliceRover. 

Lee and Yoon conduct test on Genome Wide dataset for 
Human (GWH, [6]), containing two types of datasets: donor 
and acceptor. Each sequence in donor and acceptor is 398 
nucleotides of length. All sequences have dinucleotides, GT 
and AG, in the middle. Each donor and acceptor sequence 
have GT in positions 200 and 201, and AG in positions of 
198 and 199. GWH dataset is a substantial imbalanced data 
between two classes in both donor and acceptor. The donor 
has 1,565,360 sequences where only 5.14% are positive. 
Similarly, 5.45% of 1,484,845 acceptor sequences have 
actual splice sites. Lee and Yoon evaluate their methods and 
report by F1-score. F1-score is one of evaluation metrics 
considering as the harmonic mean of precision and recall. It 
reaches its best value at 1 and worst otherwise. SpliceRover, 
CNNs-based model, is tested on the same dataset and 
evaluated by F1-score. To compare our approach to these 
previous methods, we test our models on GWH dataset and 
report F1-score as follows. 

In Table 1., we present our models’ architectures and 
parameters. We have three architectures: two are CNNs-
based and another is NNs-based. Two CNNs-based 

architectures are different in terms of depth or a number of 
convolutional, dropout and max-pooling layers. The first one 
is deeper than another one. The 2nd CNNs-based does not 
have a max-pooling layer. The hypothesis behind is because 
the sequence length is pretty short comparing to previous 
approaches and it should not be decreased by applying max-
pooling layer, which we hypothesize that this architecture 
would give better evaluation metrics than the 1st CNNs-
based. The NNs-based has an uncomplicated architecture. 
Hyperparameters we use are shown in Table 2. 
SpliceRover’s hyperparameters are used as a baseline at first 
then we fine-tune to improve the performance as the second 
one.  

TABLE I.  PROPOSED ARCHITECTURES AND PARAMETERS 

Name 
Architectures 

Layers Details 

1st CNNs 

conv2D layer 1 70 filters of size (3,4) 
dropout layer 1 p = 0.2 
conv2D layer 2 100 filters of size (3,1) 
dropout layer 2 p = 0.2 
conv2D layer 3 100 filters of size (3,1) 

maxpool layer 1 pool size (2,1) 
dropout layer 3 p = 0.2 
conv2D layer 4 200 filters of size (3,1) 

maxpool layer 2 pool size (2,1) 
dropout layer 4 p = 0.2 

dense layer 1 512 neurons 
dropout layer 5 p = 0.2 

softmax layer 2 outputs 

2nd CNNs 

conv2D layer 1 70 filters of size (5,4) 
dropout layer 1 p = 0.2 
conv2D layer 2 100 filters of size (3,1) 
dropout layer 2 p = 0.2 

dense layer 1 512 neurons 
dropout layer 3 p = 0.2 

softmax layer 2 outputs 

NNs 
dense layer 1 128 neurons 

dropout layer 1 p = 0.2 
softmax layer 2 outputs 

TABLE II.  HYPERPARAMETERS OF OUR PROPOSED MODELS 

Set 
# Optimizer Loss 

function Epoch Batch 
size 

Start 
learning 

rate 

Learning 
decay 

1 

SGD with 
Nesterov 

momentum 
0.9 

Categorical 
cross-

entropy 
30 64 0.05 5 

2 RMSProp 
Binary 
cross-

entropy 
30 64 0.001 0 

 

The results from our proposed models when perform on 
GWH dataset are shown in Table 3. As can be seen, the DL-
based models tend to give better results than NNs-based. The 
1st CNNs-based model with our fine-tuning hyperparameters 
gives better results, in both donor and acceptor, than another 
set. The 2nd CNNs-based model shows our fine-tuning 
hyperparameters gives the best result, 0.937, comparing to all 
results of acceptor data, likewise, this architecture training 
with the first set of hyperparameter gives the best result, 
0.902, of donor data. The NNs-based model results same 
trend as the 2nd CNNs-based model, however, it does not 
perform well on donor data with fine-tuning 
hyperparameters. 



TABLE III.  RESULTS FROM OUR PROPOSED MODELS OBTAINED FOR GWH DATASET 

Type of RNA 
sequences 

F1-Score 

1st CNNs 2nd CNNs NNs 

Hyper-parameters 
#1 

Hyper-parameters 
#1 

Hyper-parameters 
#1 

Hyper-parameters 
#2 

Hyper-parameters 
#1 

Hyper-parameters 
#2 

Donor 0.688 0.864 0.902 0.646 0.901 0.192 

Acceptor 0.872 0.908 0.687 0.937 0.814 0.901 

 

TABLE IV.  RESULTS OBTAINED FOR GWH DATASET COMPARING 
TO BENCHMARK RESULTS 

Type of RNA 
sequences 

F1-Score 
Lee and 
Yoon’s SpliceRover’s Ours 

Donor 0.816 0.907 0.864 

Acceptor 0.753 0.873 0.908 

 

To summarize, we illustrate our results comparing to 
other previous methods in Table 4. We show the results from 
the 1st CNNs-based model with our fine-tuning 
hyperparameters because it gives significantly better F1-
score of both donor and acceptor data. We obtain the best 
F1-score, 0.908, for acceptor data. It is nearly 20% higher 
than Lee and Yoon’s approach, and 4% better than the most 
recent approach as SpliceRover. In terms of donor data, our 
model performs better than Lee and Yoon’s approach. Our 
result cannot compete with SpliceRover, though, we consider 
our proposed models show significantly improvement since 
we train models with less sample size than the testing data, 
GWH dataset, and different data preprocessing. They give 
similar results to benchmark approaches. Thus, there are 
rooms for potential improvement based on our proposed 
models further.  

IV. CONCLUSIONS 
In summary, we propose the new data preprocessing and 

improve deep-learning-based models for RNA splice sites 
recognition. Our data preprocessing trims down the long 
RNA sequences to the size of 40 nucleotides length with 
core-dinucleotides, GT and AG, in the middle. Our proposed 
models are based on CNNs and NNs. They are trained by 
using balanced dataset of RNA sequences. We perform 
experiments based on GWH dataset. The models 
significantly outperform previous methods, Lee and Yoon’s 
and SpliceRover, by achieving F1-scores nearly 20% higher 
as maximum. In the future, we will try different data 
preprocessing methods, for example, shuffling the core-
dinucleotides (GT and AG) to other positions, and shortening 
a sequence length. Another method is changing the way to 
transfer a sequence to a matrix, e.g. encoding two 
nucleotides instead of one. This, of course, requires more 
computational resources and running time. However, the 
matrix could lead to obtaining more abstractive level of the 

RNA sequence, perhaps, generating better results by 
expanding the subject's surrounding. We will also investigate 
pre-trained models (e.g. inception-v3 and mask R-CNN), and 
different architectures and hyperparameters, including 
evaluate on other RNA sequences data. Moreover, we will 
enhance data visualization methods to facilitate an 
interpretability of deep-learning-based models. 
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