NR
MULTI-ANTENNA
Claes Tidestav
NR – DESIGNED FOR MULTI-ANTENNA

› Benefits of multi-antenna transmissions:
 - Increased signal strength, reduced interference, MU-MIMO

› In NR, all signals can be beamformed
 - PDSCH, PUSCH, PDCCH, PUCCH, PBCH, PSS/SSS, CSI-RS, SRS,…

› Transmissions are (to a large extent) self-contained
 - In-beam DM-RS for channel estimation – no reliance on broadcast pilots

› Procedures designed with beam-based transmission in mind:
 - Initial access
 - Mobility
TWO CLASSES OF MIMO SOLUTIONS

Low band
› Fully digital antenna implementation is feasible
› Digital beamforming makes it feasible to estimate the entire channel by transmitting CSI-RS.
› Data can be transmitted with a narrow beam given the estimated channel.

High band
› Fully digital antenna implementation may not be feasible
› Analog beamforming implies that gNB and/or UE can only transmit/receive in one direction (beam) at any point in time
› Therefore only feasible to span selected directions of the channel → One will need to rely on a limited number of beams.
CODEWORD, LAYER, PORT, ...

› Codeword:
 - The coded bits corresponding to one transport block
 - One codeword corresponds to one HARQ process

› Layer:
 - One codeword is split over n layers ($n=\text{rank}$)
 - One layer corresponds to one DM-RS port

› (Antenna) port:
 - Where a reference signal is transmitted
PDSCH TRANSMISSION

› NR has only a single transmission scheme for PDSCH
 - One DMRS port per layer

› Any precoding can be used
 - The UE only has to know how many layers are transmitted

› A UE can receive 1-8 layers
 - For 1-4 layers PDSCH: One codeword
 - For 5-8 layers PDSCH: Two codewords
CODEBOOK-BASED TRANSMISSION

› One method to determine the precoder

› gNB transmits CSI-RSs from multiple antenna ports

› UE evaluates several possible precoders, e.g., beams
 - Precoders are chosen from a standardized codebook

› UE sends a recommended precoder to the gNB

› gNB applies the recommended precoder to transmit PDSCH
Type I single-panel:
- Similar to LTE FD-MIMO codebooks, up to rank 8, based on single DFT grid-of-beams

Type I multi-panel:
- Rank 1-4: Extension of Type I single-panel by adding inter-panel co-phasing, either wideband or subband
- Supports 2 and 4 panels

Type II single-panel:
With reciprocity-based precoding, DL CSI is acquired based on UL SRS transmission
- Full channel information available, enabling more advanced precoding for MU-MIMO

It is mainly a proprietary feature; it can be implemented by using components in the standard.
- Therefore not that visible in the standard.

Reciprocity based and codebook based PDSCH both have their strengths, even for TDD
DO WE SEE ANY GAINS FROM LARGER ANTENNAS?

Micro scenario, type I feedback
- 16 ports: 0%
- 20 ports: 7%
- 24 ports: 12%
- 28 ports: 14%
- 32 ports: 18%

Macro scenario, type I feedback
- 16 ports: 0%
- 20 ports: 9%
- 24 ports: 16%
- 28 ports: 19%
- 32 ports: 21%

Mean user throughput gain (%)
- 16 ports: 0%
- 20 ports: 10%
- 24 ports: 20%
- 28 ports: 30%
- 32 ports: 40%

Cell-edge user throughput gain (%)
- 16 ports: 0%
- 20 ports: 10%
- 24 ports: 20%
- 28 ports: 30%
- 32 ports: 40%
A UE can transmit 1-4 layer PUSCH and use up to 4 Tx chains
- A single codeword is used

CP-OFDM waveform is used
- DFT-S-OFDM additionally supported for coverage extension
 - Only for single layer

Codebook-based precoding and non-codebook based precoding (~reciprocity)
PUSCH is supported
CODEBOOK BASED PUSCH TRANSMISSION

A typical use case would be

1. A UE transmits one or two SRS resources
 - An SRS resource has 1, 2, or 4 ports
2. gNB indicates
 - SRS resource indicator (SRI), and
 - TPMI and TRI (UE precoder matrix from a precoder codebook and rank)
3. The UE performs PUSCH transmission
A typical use case would be

1. A CSI-RS can be indicated to UE for assisting calculating UL precoder (using DL-UL reciprocity)

2. A UE transmits up to four SRS resources
 - Each SRS resource is one port and corresponds to a PUSCH layer

3. gNB indicates
 - Multiple SRS resource indicators (SRIs)
 - Number of SRIs = rank

4. The UE performs PUSCH transmission
BEAM MANAGEMENT

› In mmW, analog antenna architectures will be common

› The gNB/UE will transmit/receive all signals in beams
 – Omni-directional transmission/reception will not be possible

› In particular, the UE can only receive signals from one direction at a time
 – Need to prepare to receive from another direction
The system ensures that the beams in the gNB and the UE are aligned.

Procedures for updating beams at the gNB/UE are supported.

Primarily based on UE measurements on DL reference signals:
- Either CSI-RS or SSB
- UE uses the same beam for transmission as for reception, the gNB uses the same beam for reception as for transmission – beam correspondence

P1 procedure: beam finding
P2 procedure: Tx beam refinement
P3 procedure: Rx beam refinement
BEAM INDICATION

› Before the network changes its Tx beam, it (sometimes) sends a beam indication to the UE
 - To support the update of the UEs RX beams

› Points to a previously received reference signal

› For the reception of all DL signals:
 - PDCCH
 - PDSCH
 - CSI-RS

› Signaled to the UE in different ways for different signals:
 - DCI, MAC CE, RRC
A typical use case would be

1. The network communicates with the UE using a certain Tx beam, and the UE uses a certain Rx beam
2. The network transmits CSI-RS in a set of candidate beams – UE reports the best
3. Network starts transmitting PDSCH in new beam
4. The network repeats CSI-RS in one beam
5. The UE varies its Rx beam
6. The UE chooses the best Rx beam
UL BEAM MANAGEMENT

› Needed only if UE does not have beam correspondence
 - When a UE has beam correspondence, it may derive the UL TX beam from the DL RX beam

› UL beam management is based on SRS beam sweeps

› U1,U2,U3 procedures analogous to P1,P3,P2 procedures

› The framework for UL beam management is in general similar to DL beam management framework
SUMMARY

› NR designed for multi-antenna transmissions
 - All procedures adapted
 - All channels can be beam-formed
 - All transmissions are self-contained

› For determination of PDSCH precoders, NR supports
 - Codebook-based transmission with up to 32 ports
 - Type I and type II codebooks
 - Reciprocity-based transmission – based on SRS

› NR supports codebook based and non codebook based PUSCH transmission

› Beam management procedures have been introduced targeting high band operation