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New small-signal extraction method applied to GaN HEMTs
on different substrates

ha C. E. Yagoub' | Jeongwon Park'?C

Ggar  Intrinsic FET

FIGURE 1 GaN HEMT equivalent circuit-small signal model

(EC-SSM) including the substrate-buffer model'?
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What is Exascale and Why Zettascale

Performance (FP64-tensor)
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20-30 MW/Exaflop Goal: Solve fundamental problems from first principles
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Ecosystem of semiconductors

BOARD SYSTEMS SPECIAL VERSIONS
Process Technology, Equipment, Materials

and Manufacturing

SoC and Single Chip Packaged Devices
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Materials to Systems in Semiconductor Manufacturing and Beyond
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New ways to shrink

Advanced packaging

NEW INDUSTRY PLAYBOOK
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Om Nalamasu. Applied Materials. 2021 Svmposium on VLSI Technoloo



Transistor 2003-2025 evolution: From 2D Equivalent scaling to 3D Power scaling

Evolution of logic transistor

Nanosheet

05 US patent

2025

Source: Intel investor meeting 2022
THE INTERNATIONAL ROADMAP FOR DEVIG




gic scaling roadmap extension

....... 2030 2032 2034 2036
’NZ ’AM ’Alo ’A7 ’AS ’As ’AZ

Continued dimensional scaling
21 18 18 16 16 16 16-12

Device and material innovations

6 3 5 5 5 <4T
fFET  GAA  GAA  FSFET  FSFET et
NSFET NSFET atomic

Context-aware interconnect

. v““eﬂ https://www.tomshardware.com/news/imec-reveals-sub-1nm-transistor-roadmap-3d-stacked-cmos-20-plans



Candidates for Energy Efficient CMOS Devices

“Innovations in structures, materials & processes to shrink standard cell area
without decreasing effective device width & minimum metal width ”
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Design Technology Co-Optimization (DTCO), System Technology Co-Optimization (STCO)
Daewon Ha, Samsunq Electronics, IEDM 2022
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Introducing 2D materials

Insulator

1I-VI family

Ajayan, Kim, Banerjee - Physics Today (2016)



Introducing Transition Metal Dichalcogenides

e MX,with M =Mo, WRe,...

X =S, Se, Te
Well documented in the bulk
Wilson and Yoffe Adv. Phys. 1969

Li Be |\/| B © N ©O F | Ne

Na Mg 3 Bl 5 6 7 8 9 10 " 12 Al Si P S Cl Ar

K Ca Sc BTINBNME Cr Mn Fe Co Ni Cu 2Zn Ga Ge As Se Br Kr

Rb  Sr Y Zr Nb Mo | Te Ru Rh Pd Ag Cd In Sn Sb Te | Xe
* I n t h I S ta I k: Cs Ba La-luf Hf | Ta W [Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Se m |C0nd UCt| ng MXZ On |y Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut FIl Uup Lv Uus Uuo

M. Chhowalla et al., Nat. Chem. 5, 263 (2013)

* Trigonal prismatic phase
e 2Hc-MX, (AbA,BaB stacking)
— MosS,, MoSe, WS, WSe,, MoTe,

Stéphane BERCIAUD, IPCMS, Université de Strasbourg and CNRS, New Frontiers in 2D materials Winter school/Workshop Villard de Lans, Ja nu_



Building van der Waals
heterostructures




Metallic Semiconducting

Graphene Black phosphorus Dichalcogenides Boron nitride
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Y.Liu et al., Nature Review Materials doi: 10.1038/natrevmats.2016.42
Stéphane BERCIAUD, IPCMS, Université de Strasbourg and CNRS, New Frontiersin 2D materials



Carbon 168 (2020) 22—31

Contents lists available at ScienceDirect

Carbon

journal homepage: www.elsevier.com/locate/carbon

KN. Anindya et al. / Carbon 168 (2020) 22-31 25
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Combined effect of °C isotope and vacancies on the phonon
properties in AB stacked bilayer graphene

Khalid N. Anindya *" ', Md. Sherajul Islam " ", Akihiro Hashimoto , Jeongwon Park "¢

® Department of Electrical and Electronic Engineering, Khulna University of Engineering &Technology, Khulna, 9203, Bangladesh
b School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON KIN 6N5, Canada

¢ Graduate School of Engineering, University of Fukui, Fukui, 910-8507, Japan

¢ Department of Electrical and Biomedical Engineering, University of Nevada, Reno, USA

Fig. 1. (a) Top view of A-B stacked bilayer graphene. Upper layer A and B type atoms are represented by U-A and U-B while L-A and [-B denote lower layer A and B type atoms,

A R T I C L E [ N F 0 A B S T R A C T respectively, The shadowed red and unfilled black circle shows the randomly induced P isotope and vacancy sites, respectively. (b) Side view of A-B stacked bilayer graphene
lattice. (¢) Reciprocal lattice of graphene (single layer), where crosses represent the lattice points and dy and d; are reciprocal lattice vectors. The shadowed hexagon is the first
Brillouin zone of graphene with high symmetry points T, K, M. (A colour version of this figure can be viewed online.)

Article history: The combined effects of 1°C isotope and vacancies on the phonon properties in AB stacked bilayer gra-
Received 9 April 2020 phene (BLG) are explored theoretically. We have calculated the phonon density of states (PDOS) by
Rgce“"e‘;:)[:‘zge‘”* d form varying the isotope contents (0—100%) and vacancies (0—30%) in both layers and only in the upper layer
15 June of the BLG using forced vibrational method. We found that both isotope and vacancy or merging of these
Accepted 20 June 2020 s . AN ;
Fa ¢ _ two defects significantly affect the PDOS, especially, Ez; mode phonon, which is responsible for the
vailable online 30 June 2020 i . : : 13~ -
Raman G band, shifted downward with the increase of defect concentrations. Moreover, when ~C iso-

topes are induced only in the upper layer, Ezg peak splits into two peaks which corresponds well with the

gl?t;vr:'g;dls(.)caiization experimental results of 13'C,u’lzt'_‘ dependence G peak splitting in the Raman spectra of BLG. We also
Bilayer graphene explored the defect induced phonon localization in BLGC. Our calculated typical mode patterns show that
Isotope high frequency optical phonons are strongly localized in the vacancy as well as merging C isotope and
Vacancy vacancy defected BLG. The calculated average localization length noticed that strong phonon localization
Combined defect exists at 60% 12C isotope concentration. These findings are important for understanding the experi-

mentally observed Raman spectra as well as thermal transport in BLG.
© 2020 Elsevier Ltd. All rights reserved.
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Graphene based two-dimensional (2D) van der Waals (vdW) materials have attracted enormous 200 o' 200F o0
attention because of their extraordinary physical properties. In this study, we explore the temperature ~ 160 M 160 M
and interlayer coupling induced thermal transport across the graphene/2D-SiC vdW interface using s} Y i % F =

> s
non-equilibrium molecular dynamics and transient pump probe methods. We find that the in-plane ; 120 = | i'm [ et
thermal conductivity k deviates slightly from the 1/T law at high temperatures. A tunable k is 3 80 Vo § 80— b
found with the variation of the interlayer coupling strength x . The interlayer thermal resistance R 2 il S : = wl B :
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https://www.nature.com/articles/s41598-021-04740-4

www.nature.com/scientificreports
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; 2 - *o. § , (Nature) Scientific Reports, 12, 16085 (2022)
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L a2 of CVD grown MoS, through MoO;
“ and H,S precursors

Abdullah Arafat, Md. Sherajul Islam©25% Naim Ferdous®, A. S. M. Jannatul Islam?,
Md. Mosarof Hossain Sarkar?, Catherine Stampfl® & Jeongwon Park**

Chemical vapor deposition (CVD) through sulfidation of MoO; is one of the most important synthesis
techniques to obtain large-scale and high-quality two-dimensional (2D) MoS,. Recently, H,S precursor
is being used in the CVD technique to synthesize 2D MoS,. Although several studies have been carried
out to examine the mechanism of MoS, growth in the presence of sulfur and MoO; precursors, the
growth of MoS, in the presence of H,S precursor has largely remained unknown. In this study, we
present a Reactive molecular dynamics (RMD) simulation to investigate the reaction mechanism of
MoS, from MoO; and H,S precursors. The intermediate molecules formation, the reason behind those
formations, and the surface compositions of MoO,S H, during the initial steps of CVD have all been
quantified. Surprisingly, a sudden separation of sulfur atoms from the surface was observed in the
H,S precursor system due to the substantial oxygen evolution after 1660 K. The sulfur detachments
and oxygen evolution from the surface were found to have a linear relationship. In addition, the
intermediate molecules and surface bonds of McS, synthesized by MoO; and H,S precursors were
compared to those of a system using S, and MoO, precursors. The most stable subsidiary formation
from the H,S precursor was found to be H,0, whereas in case of S, precurscor it was SO. These results

provide a valuable insight in the formation of large-scale and high-quality 2D MoS, by the CVD
technique.



https://www.nature.com/articles/s41598-022-20531-x

Agenda
* Introduction
* Semiconductor R&D Trends
* Transistor Scaling
* 2D Materials and Devices

* Negative Capacitance FETs
* Brief Introduction of Other Research Areas in My Group

* Wide-Bandgap Semiconductors
* Wireless Power Transfer
* Brain-Computer Interface

* Challenges and Prospects




Capacitors in generic NCFET structure

Subs.trate

The quantum-, trap-, s/d geometrical-, and depletion- induced capacitors are designated as Cq, Cyap, Cy/g geor @aNd Cgep, respectively.
The capacitance of the NC and oxide layers is represented by Cyc and Cyy, respectively. However, the influence of fringing
capacitance, Cginy/4.q: ON Channel potential regulation is irrelevant as it is screened by power rails.

W. Cao and K. Banerjee, “Is negative capacitance FET a steep-slope logic switch?,” Nat. Commun., vol. 11, no. 1, pp. 1-8, 2020.



Schematic device structures of the NCFETSs reported in experimental works

(a)
M
FE
c
(c) M
FE
M
DE
(a) The FE layer is directly contacted with the channel materials; (b) A dielectric layer is used as a buffer layer and
capacitance matching layer between the ferroelectric layer and the channel materials; (c) A metal electrode is

inserted between the ferroelectric and dielectric layer; (d) A FE capacitor is externally connected with the
conventional FET with a dielectric layer.

(b) M
FE

DE




Negative Capacitance Field Effect Transistor (NCFET)
(a) (b) (c) T

Source
o —

Reverse
Sweep

(a) Circuit representation of a Negative
) Capacitance Field Effect Transistor
J Sweep. (NCFET).

(b) Energy versus charge behavior of a
typical NCFET.

(c) Schematic illustration of the
ferroelectric polarization P(t) as a
function of the ferroelectric voltage

HEIET (Ve)

7 /MOSFET (d) Ferroelectric capacitor polarization-
3 ,'5= 0 eV dec voltage hysteresis showing energy
| i landscapes at various positions, and

N

N|

Gate

(d)

', Polarization (au)
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» (e) effect of NC performance on the
— subthreshold slope.
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PZT crystal Structure and a typical ferroelectric hysteresis curve

(b) ot (c) >
P(uC/ecm [
e a<0
Remanent polarization P" D
2Pg = |Ps| + |P|
Negative Slope

. E(MVicm) c

Ece

Coercive field
Ec= 0.5( |Ec+| + |Ec.| }

(a) Illustration of the two stable locations of a core Zr** or Ti** ion in a PZT crystal [23]. (b) A typical ferroelectric
hysteresis curve (PE loop), depicting the essential features of remnant polarization and coercive field. (c) Ferroelectric
P(E) behavior showing negative slope in the region where P and E are in opposite directions.




The negative capacitance characteristic of a typical FE (PZT) material.

(b)
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(d)
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The FE free energy vs. applied charge (W-Q)
relation.

The charge-voltage characteristics (Q-V) are
obtained from (a)

An illustration of a ferroelectric layer's domain
arrangements. Monodomain, two-domain, and
multidomain states are shown from top to
bottom [30].

FE monodomain samples where polarization (P)
and surface charges induce depolarization field
(E) are shown. (middle) Formation of the
periodic domain structure with the up/down
oriented polarization and (bottom) the FE
sample with short-circuited electrodes vanishes
the depolarization field. As a result, the
monodomain structure with uniform polarization
is formed again [31].

The normalized energy and polarization states
of the ferroelectric (orange) capacitor as a
function of the normalized driving charge. The
equilibrium charge and energy of the
monodomain short-circuited capacitor are
represented by Q, and W,, respectively. The
dashed line demonstrates the unstable energy
of the monodomain state. The red curve depicts
the energy of a stable two-domain state [30].
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Examples of negative-capacitance-based device characteristics

(a (b) (- V,[=950 MV —o- |V,[=200 mV —-|V,|=50 mV
< NC-FinFET ' | @ .
= 107 g e 10
= e .
= 10 10
2 —
3 < 10 < 10°®
= R iy Baseline
g < . _§ o 10710 FinFET
- 10 Baseline . §
(&) FinFET §
£ 10677% : 10712 :
©
= ; y 14
@] 1071 =100nm 10 L,=100nm
T v T » T 75 T r -5 ;
04 02 00 3.6 3.8 & @& & 0 2 = % K __® P
Gate Voltage,V, [V] Vs (V) Vs (V)
(©)+ . (A) 80— (@)
- s 78}
2‘ - T
— : 76\ 80 -
€ 1 —
S 5 74} S
o % 72| T 60+
8o 0 - S ‘
S | > 70¢ = el Sl Mg
S é 68| - ~ 401 —@—A= 0.020um’_Som FE
= 66 | « | ~@—A= 0054 ym’_Snm FE
© i 72 n A l &A= 0200 ym’_Snm FE
c v 64 20 —9—A= 0540 unv’_Som FE |
o 2 62l-.. —~O—A = 0020 ym’_1.5am DE
= s P " ¥~ A = 00025 um’_3nm FE
— e A " - A - A - L " A 60 i H H L Y ™ ‘ T : — T e
-3 2 -1 0 1 2 10" 10" 10° 10° 107 10° 1E-13 1E12 1E-11 1E10 1E9 1E8 1E-7
Gate Voltage,Vs[V] Drain Current [A] las(A)



Eo=1.0 GV/m

Eo=1 .0 GV/m

15
1.0 f,{’""": 1 10} ‘. J"
N 05 A N {1 o5} A / '
8 00 , \ \ {1 oo} / ,"‘ ‘
g " \ \é /
o 9% \ \ b 1 05¢} {/ ’
| A y /’/ L
1.0 = O g
Y e — 15 —
45 -10 05 00 05 10 15 -15 -10 05 00 05 10 15
Eint (GV/m) E (GV/m)

(b)

77

s D 4 6

0 2
V (V)
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(a) Dependence of the polarization on the internal field and applied field in the PbTiO4 film [93].
(b) Equivalent circuit of V,,, measurement in FE/DE system. Rr and R are the insulating resistance of the FE- and DE capacitors,
respectively. Note that a high impedance system is required to obtain the accurate V. [94].
(c) V,+-V characteristics during V sweeping of FE/DE system, V;,; jump occur along with Vi drop at V= ~+V, [94].
(d) Benchmark of SS values of some reported NC FETs [84].
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Examples of negative-capacitance-based device structures
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configurations[26], b) schematic cross-section view of a
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,,,,, Si0, _ doped Si ground plane[28], ¢) a physics-based model for
Spacer HZO Spacer ferroelectric/negative capacitance transistors
(FEFETS/NCFETS) that does not include an interlayer metal

between the ferroelectric and dielectric in the gate stack[31],
d) negative capacitance in a thin epitaxial ferroelectric layer
was observed where the voltage across the ferroelectric
_ capacitor is discovered to be lowering with time when a
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HfO,/TiO,/HfO, tri-layer high-K gate oxide
based MoS, negative capacitance FET with
steep subthreshold swing L o Trilayer having 50 nm PZT

-<>_Ht'02 Monolayer having 100 nm PZT

¢ Trilayer w/o PZT
_._HfO2 Monolayer w/o 100 nm PZT
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FIG. 1. (a) Schematic diagram for the MoS, negative capacitance FET and (b) 0.1 0.2 03 0.4 0.5 0.6
the capacitance model, where the fotal equivalent capacitance of the 2D MoS, Gate Voltage,V (V)
FET (Cumos) and FE layer (PZT) capacitance (Cgz) are in a series combination g

and V¢ acts as the effective gate voltage of the FET including PZT. The gate 5
voltage of the MoS, FET becomes the surface potential v due to the incorporation FIG. 9. Comparison of transconductance vs gate voltage of the 2D MoS; NCFET
of PZT. using the trilayer HfO,/TiO,/HfO, and single layer HfO,.

Our results have shown tremendous improvement in the current on—off ratio as well as the transconductance value that
suppresses all the results found from other works performed until now.
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Energy Band diagram of n-channel GAA nanowire Tunnel-FET
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Distribution profile of the current density and e-tunneling
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The distribution profile of the current density and e-tunneling along with the position of channel

length in different gate voltages for the nanowire GAA n-channel Tunnel-FET; (a) current density
vs position along the channel, showing a maximum value of 1.8x107 A/m?2 (b) e-Tunneling in

logarithmic scale vs position along the channel showing the highest value of =10 38/cms3.
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Transfer characteristics of the baseline NGAA Tunnel-FET
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Transfer characteristics of the baseline NGAA Tunnel-FET (a) Idsvs Vg, showing a large saturation
current of 17uA and a maximum lgy/log Fatio of =1.132x10° at vVd=0.6V , and (b) log10 (Ids ) vs Vg curve
by differing vd, showing a low DIBL of 9.7 mV.
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Transfer characteristics (I, vs V, )
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Threshold voltage of the baseline structure
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Performance evaluation of the proposed structure with and ferroelectric materials. The threshold
voltage of the baseline structure is 0.85 V (Vt(TFET) ), whereas it reduces to 0.53 V (Vt(NCTFET) ) once
the NC effect is introduced.
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Highlights

A hybrid nanowire GAA NCTFET structure is demonstrated by combining the
GaAs/InN baseline TFET and a ferroelectric layer (HZO) in the gate stack.
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The use of large lattice-mismatched materials enables the staggered and
broken bandgap alignment, and the GAA structure maintains better current
conduction and carrier control capabilities of the device.
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The GAATFET channel architecture and ferroelectric gate insulator are
adjusted to obtain the optimum band-to-band tunneling and potential Ee Ao
amplification, therefore the highest ION/IOFF ratio of NCTFET is achieved. ="

The proposed GaAs/InN nanowire gate all around NCTFET ameliorates the
limitations of scaling down the transistor size and reduces power
consumption. ©

Therefore, GaAs/InN nanowire GAA NCTFET creates a unique route for the
ongoing advancement of the applicability of electronic devices, seems to be a
viable option for an Internet of Things (IoT) technological platform.




Challenges of NCFETSs

« NCFET technology comes with an important side effect in which it increases
the total capacitance of transistor, which can lead to reliability problems
caused by IR-drop and voltage fluctuation during circuit’'s operation.

« At the same time, because NCFET technology enables circuits to operate at
lower voltages, it is expected that other reliability problems, related to lifetime,
to become much less because all the underlying aging mechanisms, such as
negative bias temperature instability (BTIl) and hot-carrier injection (HCI),
strongly depend on the operating voltage.




Prospects of NCFETS

« Because of the high need for low-power FET technology, NCFETs have
received much attention since Salahuddin and Datta's work.

« Although significant progress has been made in establishing the NC effects
both theoretically and empirically, numerous obstacles remain before
NCFETs can be used in genuine consumer devices.

« Although NCFETSs will open a new era of transistors to satisfy the demands of
a new low-power switch, NCFET optimization and device physics will
necessitate a thorough grasp of a wide range of applications.
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Abstract

In this article, a new extraction technique is proposed to extract the small-
signal parameters of gallium nitride (GaN) high electron mobility transistors
(HEMTSs) on three different substrates namely, Si, SiC, and Diamond. This
extraction technique used a single small-signal circuit model to efficiently
describe the physical and electrical properties of GaN on different substrates.
This technique takes into account any asymmetry between the gate-source and
gate-drain capacitances on the asymmetrical GaN HEMT structure, charge-
trapping effects, passivation layer inclusion, as well as leakage currents associ-
ated with the nucleation layer between the GaN buffer layer and the different
substrates. The extracted values were then optimized using the grey wolf opti-
mizer. The proposed technique was demonstrated through a close agreement

between simulated and measured S-parameters.

KEYWORDS

diamond substrate, GaN HEMT, grey wolf optimizer, parameter extraction, small signal

modeling
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FIGURE 1 GaN HEMT equivalent circuit-small signal model
(EC-SSM) including the substrate-buffer model*®
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Figure 1. Atomic configuration of the graphene/2D-SiC van der Waals heterostructure (vdWH) used to
calculate the (a) in-plane and (b) out-of-plane thermal conductivity. The + AQ amount of heat is applied to the
hot slab (blue area) placed at the length of X =1/4 and — AQ amount of heat is extracted from the cold slab (gray
area) placed at the length of X=3L/4 in the x direction. Here, the blue to gray gradient arrow reflects the heat
flow around the sheet length. A 50 fs ultra-fast heat impulse is applied to the graphene in the out-of-plane (z)
direction to compute the interface thermal resistance.

Graphene Si (SiC)
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Exceptional in-plane

and interfacial thermal transport
In graphene/2D-SiC van der Waals
heterostructures

Md. Sherajul Islam'™, Imon Mia?!, Shihab Ahammed?, Catherine Stampfl> & Jeongwon Park®*

Graphene based van der Waals heterostructures (vdWHSs) have gained substantial interest recently
due to their unique electrical and optical characteristics as well as unprecedented opportunities

to explore new physics and revolutionary design of nanodevices. However, the heat conduction
performance of these vdWHs holds a crucial role in deciding their functional efficiency. In-plane

and out-of-plane thermal conduction phenomena in graphene/2D-SiC vdWHSs were studied using
reverse non-equilibrium molecular dynamics simulations and the transient pump-probe technique,
respectively. At room temperature, we determined an in-plane thermal conductivity of - 1452 W/m-K
for an infinite length graphene/2D-SiC vdWH, which is superior to any graphene based vdWHs
reported yet. The out-of-plane thermal resistance of graphene — 2D-SiC and 2D-SiC — graphene was
estimated to be 2.71 x 10”7 km?/W and 2.65 x 10”7 km?/W, respectively, implying the absence of the
thermal rectification effect in the heterobilayer. The phonon-mediated both in-plane and out-of-plane
heat transfer is clarified for this prospective heterobilayer. This study furthermore explored the impact
of various interatomic potentials on the thermal conductivity of the heterobilayer. These findings are
useful in explaining the heat conduction at the interfaces in graphene/2D-SiC vdWH and may provide a
guideline for efficient design and regulation of their thermal characteristics.
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ABSTRACT
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FIG. 1. (a) Optical microscopy image of the optically patterned 40 nm a-GST film.
(b) Mlustration of the crystallized region created by low-power patteming. (c)
lllustration of melting at higher power. (d) and (e) AFM topography measurements
at 180 mW, 300 mW, and 150 us, as marked in (a).

The measurement of inhomogeneous conductivity in optically crystallized, amorphous Ge,Sb,Tes (GST) films is demonstrated via scanning
microwave impedance microscopy (MIM). Qualitative consistency with expectations is demonstrated in spots crystallized by focused
coherent light at various intensities, exposure times, and film thicknesses. The characterization of process imperfections is demonstrated
when a mask is used to optically pattern the nanoscale features of crystalline GST in the amorphous film. These measurements show the

ability of MIM to resolve partial crystallization, patterning faults, and other details in optically patterned GST.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5052018
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What Is Neuromorphic Computing?

Von Neumann architecture < versus > Neuromorphic architecture

Neural network
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Schuman, C.D., Kulkarni, S.R., Parsa, M. et al. Opportunities for neuromorphic computing algorithms and applications. Nat
Comput Sci 2, 10-19 (2022). https://doi.org/10.1038/s43588-021-00184-y



Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient

Neuromorphic Computing
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Opportunity for full compute stack co-design in neuromorphic computers

State of the art:
bottom-up approach
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Challenges of Neuromorphic Computing

While neuromorphic computing has the potential to revolutionize applications of artificial intelligence, data
analysis and even our understanding of human cognition, its development faces several challenges.

» Has no standard benchmarks for performance assessment

« Limited hardware and software availability

 Difficult to learn and apply

» Reduced precision and accuracy in comparison to similar neural networks

No Benchmarks or Standardization

Because neuromorphic computing is still a relatively new technology, there are no standard benchmarks
for it, making it difficult to assess its performance and prove its efficacy outside of a research lab.

The lack of standardized architectures and software interfaces for neuromorphic computing can also make
it difficult to share applications and results.

However, there is a “big push” among academic and industry leaders to change this.
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Deep brain stimulation for Parkinson’s Disease: A Review and Future
Outlook

Anahita Malvea' - Farbod Babaei? - Chadwick Boulay** - Adam Sachs®*° . Jeongwon Park®"
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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that manifests as an impairment of motor and non-motor abili-
ties due to a loss of dopamine input to deep brain structures. While there is presently no cure for PD, a variety of phar-
macological and surgical therapeutic interventions have been developed to manage PD symptoms. This review explores
the past, present and future outlooks of PD treatment, with particular attention paid to deep brain stimulation (DBS), the
surgical procedure to deliver DBS, and its limitations. Finally, our group’s efforts with respect to brain mapping for DBS
targeting will be discussed.




Recurrent Neural Networks to Model Neural Dynamics
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Cell Reports

Ensembles code for associative learning in the
primate lateral prefrontal cortex
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Figure 6. Predicted and Ground Truth disease progression curves for Test Patients. Each subplot belongs to
one test patient. The curve in blue is the ground truth curve and the curve in orange is the one predicted by our
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Predictive modelling of Parkinson'’s
disease progression based

on RNA-Sequence with densely
connected deep recurrent neural
networks

Siraj Ahmed?, Majid Komeili?*! & Jeongwon Park3*<

The advent of recent high throughput sequencing technologies resulted in unexplored big data of
genomics and transcriptomics that might help to answer various research questions in Parkinson’s
disease (PD) progression. While the literature has revealed various predictive models that use
longitudinal clinical data for disease progression, there is no predictive model based on RNA-Sequence
data of PD patients. This study investigates how to predict the PD Progression for a patient’s next
medical visit by capturing longitudinal temporal patterns in the RNA-Seq data. Data provided by
Parkinson Progression Marker Initiative (PPMI) includes 423 PD patients without revealing any race,
sex, or age information with a variable number of visits and 34,682 predictor variables for & years.
We propose a predictive model based on deep Recurrent Neural Network (RNN) with the addition

of dense connections and batch normalization into RNN layers. The results show that the proposed
architecture can predict PD progression from high dimensional RNA-seq data with a Root Mean
Square Error (RMSE) of 6.0 and a rank-order correlation of (r=0.83, p<0.0001) between the predicted
and actval disease status of PD.


https://www.nature.com/articles/s41598-022-25454-1.pdf
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* Neuro Cognitive Communicator
« Synergistic utilization of multiple cortical areas

« Triggered Deep Brain Stimulation (DBS)
« Effects of Modulations On Symptoms
« Therapeutic Closed Loop BCI for PD

A. Rouzitalab, C. B. Boulay, J. Park, J. C. Martinez-Trujillo, and A. J. Sachs, “Ensembles code for associative learning in
the primate lateral prefrontal cortex”, Cell Reports, vol. 42, no. 5, May 2023, doi: 10.1016/j.celrep.2023.112449.
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