thermal atomic Layer Etch

A Critical Tool for Logic and Memory Downscaling

Martin E. McBriarty, PhD (he/him)

martin.mcbriarty@emdgroup.com April 11, 2024

Thermal Atomic Layer Etch **Agenda**

1. Background

- Growing Complexity of 3D Devices
- Semiconductor Etches
- How ALE Works
- 2. ALE of Metals: Cu, Co, Mo, W, Ni
- **3.** ALE of Metal Oxides: ZrO₂, HfO₂
- 4. Outlook

Background: 3D Devices & Etches

4 INTERMOLECULAR[®]

Etches & Cleans in Semiconductor Fabrication

, 1. 1. 1. 1.

Method	Etch Rate	Selectivity	Conformality
Wet Etches & Cleans	~1 – 10 ³ nm/min	Good	Limited at high AR / low CD
Plasma Etching & Reactive Ion Etching (RIE)	~10 – 10 ⁴ nm/min	Moderate damage to non-etched surfaces	Poor
Atomic Layer Etch (ALE)	~0.1 - 1 nm/min	Good (the ALE)	

ALE is the best method for *precise, selective etch* in complex 3D nanostructures

ALE is the "reverse" of Atomic Layer Deposition (ALD)

6 INTERMOLECULAR[®]

Vapor-Phase Etch by Thermal Volatilization Making Volatile Metal Complexes at the Surface

Thermal Atomic Layer Etch Controlling Selective Etch Using Surface Modification

- **Surface modifiers** convert a thin surface layer of a material (<1nm) into a different compound:
 - Metals \rightarrow metal oxides or halides
 - Metal oxides \rightarrow metal halides
- After a purge, the **volatilizer** selectively etches the modified surface material
- This ALE sequence is cycled to remove the desired thickness of material (a few nm)
- Plasmas may be used for surface modification and/or volatilization, if geometry allows

Example <u>Thermal ALE</u> Process for a Metal:

Thermal Atomic Layer Etch Controlling Selective Etch Using Surface Modification

- **Surface modifiers** convert a thin surface layer of a material (<1nm) into a different compound:
 - Metals \rightarrow metal oxides or halides
 - Metal oxides \rightarrow metal halides
- After a purge, the **volatilizer** selectively etches the modified surface material
- This ALE sequence is cycled to remove the desired thickness of material (a few nm)
- Plasmas may be used for surface modification and/or volatilization, if geometry allows

M. McBriarty, AtomicLimits.com (2022)

https://www.atomiclimits.com/2022/02/03/atomic-layer-etch-carves-the-path-to-more-efficient-computing/

Konh et al., JVSTA 37

(2019) 021004

Thermal Atomic Layer Etch: Examples **Controlling Selective Etch Using Surface Modification** TiN ALE by O₃

Surface modifiers convert a thin surface layer of a material (<1nm) into a different compound:

- Metals \rightarrow metal oxides or halides
- Metal oxides \rightarrow metal halides

After a purge, the **volatilizer** selectively etches the modified surface material

This ALE sequence is cycled to remove the desired thickness of material (a few nm)

Plasmas may be used for surface modification and/or volatilization, if geometry allows

Co

Co

03

HF

Co(hfac),Cl,

etched

Co

W ALE by conversion-etch using O_3 / BCl₃ / HF Johnson et al., ACS AMI 9 (2017) 34435

Thermal Atomic Layer Etch Isotropic Etch by Kinetic Control

When conformal etch is needed, the surface modification reaction **must be self-limiting**

Thermal ALE enables **atomically precise etch** in 3D nano-architectures:

- Trenches
- Vias
- Lateral openings

M.E. McBriarty. Atomic Layer Etch Carves the Path to More Efficient Computing. **2022**. AtomicLimits.

EMD Electronics covers nearly all aspects of semiconductor manufacturing

How do ALE & related techniques fit in?

¹² INTERMOLECULAR[®]

EMD Electronics covers nearly all aspects of semiconductor manufacturing

How do ALE & related techniques fit in?

Classification: Public **Intermolecular: EMD's Silicon Valley Science Hub**

Capabilities at-a-glance

- AP30 cluster platform
- ALD: 300mm
- PVD: 200 & 300mm

Integration (Wet cleans & Anneals)

- Wet: Clean etch, deposition
- Single Wafer Clean: 300mm
- Wet-bench: 300mm
- Anneal: Coupons → 300mm

Lithography & Etch

- Contact lithography (up to 8"), coat, exposure, develop & etch
- Oxide and metal etch
- Electron beam lithography

Informatics

- Substrate management
- Automated data collection & materials database
- Automated analysis

Physical, Optical, & X-ray Characterization

- XRF, XRR, XRD, XPS
- Ellipsometry, UV-Vis, FTIR
- Optical microscopy
- Spectrophotometry
- SEM, AFM, contact angle
- Particles (SP1)
- Nanoindentation
- TEM, Auger, SIMS, TXRF, ICPMS*

Electrical Characterization & E-Test

- Variable temperature chucks
- C-V, I-V, P-V & parameter extraction
- Leakage, line resistance, contact resistance, capacitance
- Radiant ferroelectric tester
- V_{bd} TDDB
- Pulse switching: I_{on}, I_{off}, data retention (e.g. Non-volatile memory)
- Internal Photoemission Spectroscopy & KPFM

14

ALE of Metals

02

Metal ALE for Logic: Fully Self-Aligned Via (FSAV) Controlled Selective Etch for <10nm Interconnects

- Smaller transistors need **smaller metal lines** to connect them
- Every Å of pattern error can have **orders of magnitude impact** on device reliability

Fully self-aligned via (FSAV): **larger** *horizontal* **margin of error** by *vertically* displacing the contact

Requirements for metal ALE:

- Low temperature
- No residues
- Free of certain halogens
- No roughening
- No damage to neighboring materials

M. Balseanu, Selective ALD in a Continuous World, New Techniques and Advancements. SMC Korea **2021**.

Thermal ALE of Cu Halogen-Free Cu Removal on a Limited Thermal Budget

2-chemical ALE process:

- Controlled oxidation + hydroxylation of Cu surface by O_2+H_2O
- Purge byproducts with argon
- Volatilization of oxidized surface by halogen-free etchant: Adhil or Vega
- Purge byproducts with argon

Thermal ALE of Cu **Process Tuning Using the Adhil Halogen-Free Volatilizer**

Control oxidant & volatilizer doses to tune etch per cycle:

Thermal ALE of Co, Ni, Mo, and W Choosing the Right Surface Modifier

Oxides of **Co**, **Ni**, or **W** are *not* removed by Adhil or Vega...

Metal ALE at <350 °C

Oxidation / Vega Oxidation / Adhil

Thermal ALE of Co, Ni, Mo, and W Choosing the Right Surface Modifier

EMD Electronics'

...but <u>chlorides</u> of **Mo, Co, Ni,** or **W** are volatilized.

Mo ALE	No Process	Oxidation / Vega	Chlorination / Vega
Mo Removed (Å)		28	30
RMS roughness (nm)	0.3	0.9	0.4
Resistivity Increase (uohm-cm)		>50% increase	No change
Etch Selectivity vs. Si and SiO_2		>20:1	>20:1
AFM Image (2um x 2um, 6nm vertical range)			

ALE OF Metal oxides

How Can ALE Enable DRAM Downscaling?

T.S. Böscke, PhD Dissertation, TU Hamburg (2010)

How Can ALE Enable DRAM Downscaling?

T.S. Böscke, PhD Dissertation, TU Hamburg (2010)

M.E. McBriarty, "Atomic Layer Etch Carves the Path to More Efficient Computing", AtomicLimits (2022) J.A. Murdzek & S.M. George, J. Vac. Sci. Technol. A **38** (2020) 022608

EMD's High-*k* ALE Process 1 **ZrO₂ Thermal ALE**

EMD's High-k ALE Process 1 **ZrO**₂ Thermal ALE

Process Flow

Etched • ALE, 350 °C ZrO_2 • Ar anneal, 500 °C • ALD ZrO_2 (70 Å) • ALD TIN (~80 Å) • SiO₂ (3000 Å)

TiN

Si

XRD Intensity

• Si substrate

ALE Etch per Cycle (EPC) is tuned by choice of residue modifier & process parameters

EPC = 0.6 - 1.5 Å/cyc

W Residues

ZrF₄

ligand

etched

ZrO₂

OMAC

EMD's High-*k* ALE Process 2

ZrO₂ Thermal ALE Using Metal-Free Reactants

EMD's High-*k* ALE Process 2 **ZrO₂ & HfO₂ Thermal ALE**

ZrO₂ & HfO₂ Etch Performance

ZrO2 ALE with oxidant
HfO2 ALE with oxidant
ZrO2 ALE, no oxidant
HfO2 ALE, no oxidant

Pre-ALE (61 A) 8 ALE cycles (53 A) 18 ALE cycles (41 A)

EMD's High-*k* ALE Process 2 ALE Performance and Selectivity (350 °C)

Material	Etch per cycle (Å/cyc)	Offset (Å)
ZrO ₂	1.52	3.9
HfO ₂	0.50	2.2
HZO [ALD process 1]	0.12	-0.2
HZO [ALD process 2]	0.17	1.1
Al ₂ O ₃	0.05	-4.3

ALE Performance with Linear Fits

• ZrO2 • HfO2 • HZO [1] • HZO [2] • Al2O3

outlook for ALE

ALE Beyond Etchback Boosting Area-Selective Deposition (ASD) by Selective Etch

- In ASD, unwanted nuclei grow on the "non-growth" surface
- ALE can remove unwanted nuclei with **minimal removal** of desired film

Metal-on-metal ASD for supervia bottom-up fill Stray metal nuclei → current leaks!

Making Thermal ALE Viable for Semiconductor Manufacturing

Process

- Etch per Cycle
- Selectivity
- Conformality
- Surface Quality
- Film Properties & Performance

Manufacturing

- Reproducibility
- Throughput
- Chemical Consumption
- Corrosion
- Byproduct Re-Deposition

Safety & Sustainability

- Abatement
- Global Warming Potential (GWP)
- Chemical Life Cycle

EMD Electronics covers nearly all aspects of semiconductor manufacturing

How do ALE & related techniques fit in?

Martin E. McBriarty, PhD (he/him)

Senior Scientist, EMD Electronics

martin.mcbriarty@emdgroup.com
+1 (408) 483-4726
3011 North First St.
San Jose, CA 95134 USA

