Planning and Executing Fast-Track Projects

Dr. Raymond Levitt
Professor of Civil & Environmental Engineering
Academic Director, Advanced Project Management Program
Stanford University

Presentation to IEEE SCV
Engineering Management Society
October 29, 2003
Planning and Executing Fast Track Projects

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach
- Appendix
 - Trajectory of Ongoing Project Design Research
Fast-Track Project Case Study: Lockheed Martin Launch Vehicle

- **Goal:** Shrink time-to-market for LMLV by 80% vs. Trident missile!
- **Highly Concurrent:** many interdependent activities must be scheduled concurrently
- **Key components** will be outsourced to minimize cost
Planning and Executing Fast Track Projects

Organization of Avionics PDT
Planning and Executing Fast Track Projects

Converting Strategy into Action

Activity Workflow for Avionics PDT

- Project Manager (1)
- Offshelf SubTeam (ST) (5)
- Cables ST (3)
- Flight Boxes ST (15)
- ElectronicParts ST (6)
- Packaging ST (1.5)

Define Requirements
- Vehicle Avionics Concept
- New Engineering (Cables)
- Reengineering Experiences

Developing Sub-contracts
- Range Requirements
- Physical Mockup

Teaming Agreements
- Procurement

System Integration and Test
- Build and Test Flight Units
- Paint and Physical Mockup

Cables SubTeam (3 FTE)
- Detailed Cable Drw.
- Fabricate and Test Cables

Avionics SubTeam (6 FTE)
- Building and Test Flight Units
- Apply Existing Applications

Flight Boxes ST (15 FTE)
- Build and Test Flight Units

Electronic Parts SubTeam (6 FTE)
- Detailed Cable Drw.
- Fabricate and Test Cables

Packaging ST (1.5 FTE)
- Printed Wiring Board Design
- Printed Wiring Assembly
- Enclosure Design
- Top Assembly

Identify Parts Required
- Search for Vendors
- Prepare Documentation
- Procurement Support

Activity (Total Hours)

Predecessor - Successor relationship

- Offshelf SubTeam (5 FTE)
- Cables SubTeam (3 FTE)
- Flight Boxes ST (15 FTE)
- Electronic Parts SubTeam (6 FTE)
- Packaging ST (1.5 FTE)

- Project Manager (1)
- Offshelf SubTeam (ST) (5)
- Cables ST (3)
- Flight Boxes ST (15)
- ElectronicParts ST (6)
- Packaging ST (1.5)
Case Study Results:

Lockheed Martin Launch Vehicle

- LMLV1 launched in mid-April 1996 – almost **4 months later** than planned
- Launch vehicle “departed controlled flight” and **had to be detonated** by AF safety officer
- Analysis of telemetry data indicated most likely cause of failure to be a **misrouted cable** that shorted out!
Analysis Tools Can Enable “Project Design”

- **Conceptual Design**
- **Detailed Design and Execution**
- **Closeout & Learning**

- **Level of Influence**
- **Expenditure of Funds**
- **Outcome Predictions**
- **Analysis Tools**
- **Outcome Knowledge**
Fast Track Projects Are Information-Intensive

Product

High performance, complex product has high level of inter-dependency between its subsystems

Process

Fast-track schedule triggers unplanned coordination and rework for project organization

Organization

Project team must process large amount of information under extremely tight time constraints
Planning and Executing Fast Track Projects

The Challenge of Fast-Track Projects: “Concurrent Engineering” Incurs Large Overheads

CPM View of Fast-Track Project work—Overlapped Activities

Reality of fast-track project work!

Increased Coordination
Increased Rework
Planning and Executing Fast Track Projects

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach
- Appendix
 - Trajectory of Ongoing Project Design Research
PERT Simulation

- Assume each activity has a variable duration that is described by a probability distribution (Gamma) as follows:

- Perform a large number of PERT simulations (~1,000)
 - Independently sample each activity’s duration
 - Perform a standard CPM analysis, using the sampled duration for each activity
 - Use multiple (~1,000) CPM analyses to compute probability distributions of project duration and activity criticality
What Would PERT Simulation Have Told Lockheed Managers?

- “There is uncertainty in project completion time”

- “Some near-critical activities may become critical”
 - Fast-track projects usually have multiple near-critical paths
 - A “criticality index” is computed for each activity, equal to the % of simulation trials in which it was critical
Pros & Cons of PERT Simulation for Fast-Track Projects

Pros:
- Shows how uncertainty in task durations affects uncertainty of project completion date
 - A straightforward extension of CPM approach and tools

Cons:
- Assumes that activity durations vary independently
 - Does not model fundamental causes of variation in activity durations (e.g., poor designs, key skill deficits, bad weather, ...)
 - Does not reflect that fact that positive or negative risk factors ("knights and villains") will impact multiple activities
 - Gives managers no guidance about where/how to intervene
- Assumes no effects of executing activities in parallel vs. in sequence
 - Provides no insights about the hidden cost of more aggressive fast-tracking (concurrent task scheduling)
Planning and Executing Fast Track Projects

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach
- Appendix
 - Trajectory of Ongoing Project Design Research
Critical Chain* Concepts—1

- Remove hidden safety from task estimates

- Eliminate multitasking

* Sources: Eliyahu Goldratt, “The Critical Chain,” and Scitor Corporation Web Site)
Critical Chain* Concepts—2

- Plan backward from required completion date
- Calculate the Critical Chain (the resource constrained critical path)

* Source: Eliyahu Goldratt, Scitor Corporation Web Site
Critical Chain* Concepts—3

- Insert Project Buffer at end of critical chain; and insert Feeding Buffer at end of all non-critical chains

* Source: Eliyahu Goldratt, Scitor Corporation Web Site

Track consumption of buffers during project
What Could Critical Chain Analysis Have Told Lockheed Managers?

- **During the Planning Stage**
 - “Start some project activities earlier!”
 - Earlier start time may not have been feasible.

- **During the Execution Stage**
 - “Cable team project and feeding buffers are being consumed by activity overruns!”
 - Analysis could have alerted managers earlier in the project to bring in extra cable resources.
of Critical Chain for Fast-track Projects

- Highlights latest starts
- Shows impact of eliminating multi-tasking
- Tracks impact of activity delays on buffers
- Does not relate size of buffer in Feeder Chain or Critical Chain to degree of complexity or interdependence of activities in that chain
- Does not predict relative schedule risks of particular activities or chains in advance—vs. “task criticality” in PERT Simulation
Planning and Executing Fast Track Projects

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach
- Appendix
 - Trajectory of Ongoing Project Design Research
System Dynamics Approaches

- Model projects as “stocks and flows” of work, resources, information, motivation, etc.
- Express relationships between variables as arbitrarily simple or complex finite difference equations

What Would a System Dynamics Model Have Told Lockheed Managers

- Showed impacts of **positive and negative feedback loops on performance**
- Show impacts of **delayed feedback loops**—(oscillation)
- Could provide insights about overall schedule risks due to fast-tracking this project
- Unlikely to have identified specific problems in this case

Source: “The Rework Cycle: Why Projects Are Mismanaged” by Kenneth Cooper, PMNet
Planning and Executing Fast Track Projects

Converting Strategy into Action

©2001 STANFORD ADVANCED PROJECT MANAGEMENT
A PARTNERSHIP OF IFS AND STANFORD CENTER FOR PROFESSIONAL DEVELOPMENT

Pros & Cons of System Dynamics for Fast-Track Projects

Pros

- System Dynamics is a broadly applicable simulation language
 - SD has been applied to problems as diverse as business supply chains (e.g., “The Beer Game”) and natural ecosystems (e.g., sustainability of fisheries, forests, …)

Cons

- System Dynamics is a broadly applicable simulation language
 - No built-in objects or behaviors to model projects in detail
 - Insights it can provide about projects tend to be generic and high level (e.g., rework example)
 - “Stocks & flows” architecture is ideally suited for modeling flows of goods & info in ecosystems or supply chains
Planning and Executing Fast Track Projects

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach
- Appendix
 - Trajectory of Ongoing Project Design Research
VDT Project Design Case Study: *Lockheed Martin Launch Vehicle*

Project Design Approach

- **Model** planned fast-track work process and proposed organization realistically

- **Simulate** organization executing work process to predict schedule/quality risks

- **Compare** predicted performance vs. plan, and “intervene” to mitigate risks

- **Iterate** to find “optimal” project design
LMLV Project Avionics Team: VDT/SimVision Model

- Start
- New Engineering
- Vehicle Avionics Concept
- Reengineering Experiences
- Apply Existing Applications
- Re-engineering Experiences
- Experiences
- Define Interfaces
- Detailed Cable Drawings
- Fabricate and Test Cables
- Identify Parts Required
- Search for Vendors
- Prepare Documentation
- Procurement Support
- Production Enhancements
- Build and Test Flight Units
- System Integration & Test
- Project Management
- Avionics PM

Scenario 1 Properties
- General
- Organization
- Probabilities
- Simulation Settings
- Centralization: Medium
- Formalization: Low
- Team Experience: Medium
- Matrix Strength: High
LMLV Project: Actor Backlogs

Actor Backlog
Lockheed Avionics - Scenario-1 - Baseline

- Avionics Project Manager
- Cables Sub-team
- Electronic Parts Sub-team
- Flight Box Sub-team
- Off Shelf Sub Team
LMLV Project: Process Quality Risks

Activity Communication Risk
Lockheed Avionics - Scenario-1 - Baseline

- Fabricate and Test Cables
- Define Interfaces
- Detailed Cable Drawings
- Vehicle Interconnect Layout
- Vehicle Avionics Concept
- Project Management
- Developing Subcontracts
- New Engineering
- Teaming Agreements
- System Integration & Test

missed communications / total communications

- 0 to 0.25
- 0.25 to 0.5
- 0.5 to 0.75
- 0.75 to 1.0
Project Design Guides Managerial Interventions

“What-if Analysis” of LMLV Avionics Team

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Better</th>
<th>Worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Cable Subteam staffing from 3-5 engineers</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>Replace 3 Cable Subteam members with 3 more experienced engineers</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Cost
- Duration
- Except's
Lockheed Martin Launch Vehicle: Project Design Results

- Simulated organization executing work process to predict schedule and quality risks
 - VDT/\textit{SimVision} predicted launch date delay to within a few days, one year ahead!
 - VDT/\textit{SimVision} identified cable team quality risk that ultimately caused LMLV to fail!
- Predicted performance impact of two potential managerial interventions (although these results were not used)
Planning and Executing Fast Track Projects

But Project Participants also Coordinate. And they Generate & Handle Exceptions

Project Participants Perform Assigned Tasks

“Exception”

(Jay Galbraith, 1974)
Planning and Executing Fast Track Projects

Converting Strategy into Action

Info. Volume is Derived from Project Tasks: Direct Work, Communications, Rework
Planning and Executing Fast Track Projects

Team Information Processing Capacity is Derived From:

- # Actors
- Skill Set
- Experience
- Structure
- Policies

Actor Properties

Name: Design PM

Role: SL

Skill
- Design Coordination: High
- Architectural: Medium
- Biotechnology: Low
- Mechanical: Low

Centralization: High

Formalization: Low

Team Experience: Medium

Matrix Strength: High

Scenario-1 Properties
Planning and Executing Fast Track Projects

VDT/SimVision Information Processing Model:
Team IP Capacity >= Task IP Demand?
Planning and Executing Fast Track Projects

Predictions from VDT/SimVision Project Design Approach

Model

Simulation Results

Activity Cost Breakdown
\texttt{Asic2p1 - Scenario-1}

- FloorPlanning
- FullChipSynth
- Synth_B1RTL
- Write_B1RTL
- Design Coordination
- Sim Gates
- Gen Test Suite
- Verify_B1RTL
- Develop Specification
- Verify RTL

- Work
- Rework
- Coordination
- Decision Wait
Steps in VDT/SimVision Project Design

- Identify client’s key business issues and risks
- Develop Flexibility Matrix and trade-offs

Model “Baseline Case”
- Lay out 5-10 key business milestones per project
- Identify and sequence 5-10 activities per milestone
- Lay out organization:
 - structure, positions, capacity, skills, decision making policies
- Assign each task to **one responsible position**

- “Flight-simulate” Baseline Case
 - Diagnose backlogs, schedule and quality risks
 - Explore potential interventions to mitigate risks

- Choose a project design that is likely to succeed
Level of Effort for Project/Program (Re)Design

<table>
<thead>
<tr>
<th>Elements of Fast-Track Program Design and Redesign</th>
<th>Client Effort (FTE-days)</th>
<th>Analyst Effort (FTE-days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gather data from client about business objectives, milestones, tasks, costs, staffing, known risks, etc.</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Build “straw-man” as-planned, baseline model</td>
<td>0</td>
<td>1-2</td>
</tr>
<tr>
<td>Discuss and refine model</td>
<td>0.5</td>
<td>1-2</td>
</tr>
<tr>
<td>Diagnose risks with baseline case</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Evaluate multiple potential interventions</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Produce recommendations and report</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ongoing Redesign (Tracking) per cycle</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Planning and Executing Fast Track Projects

VDT Fast-Track Project Design: Examples

- Reduce time to market for complex manufacturing facilities
- Facilitate roll-out of new wireless telecom infrastructure across multiple regions
- Develop best practices template to accelerate factory start-ups
- Identify and correct subcontractor management problem that would have delayed project 4 mo.
- Help to meet ship milestone date required to close sale with large customer
- Align goals and accelerate rollout of innovative consumer product by 3 months
- Identify and mitigate critical quality risks to accelerate rollout of new server product
- Help to define scope, schedule and organization for strategic IT projects
Planning and Executing Fast Track Projects

✓ & ✖ of VDT/SimVision for Fast-Track Projects

✓ VDT/SimVision uniquely highlights impact of fast-track work process on cost, schedule and process quality

✓ VDT/SimVision shows impacts of differences in participants skills & experience on project outcomes

✓ Small models and graphical inputs/outputs engage executives in project design process

✗ Models only organizational risks—not technical or market risks (these risks require separate “scenarios”)

✗ VDT organizational model assumes hierarchical exception handling
Analysis Tools Can Support “Fast-Track Project Design”

- PERT Simulation
- Critical Chain
- System Dynamics
- Virtual Design Team
Planning and Executing Fast Track Projects

Converting Strategy into Action

Outline

- Fast Track Project Case Study: The Lockheed Martin Launch Vehicle
- Techniques for Planning Fast Track Projects
 - PERT Simulation
 - The Critical Chain
 - Systems Dynamics Simulation
 - The VDT/SimVision Project Design Approach

Appendix

- Trajectory of Ongoing Project Design Research
Planning and Executing Fast Track Projects

Converting Strategy into Action

Trajectory of Past VDT Project Design Research

- More Impact of IT/Communication technologies
- More Impact of Social Processes
- More Innovative Work Processes
- More Flexible Organizations

- 95-99: Thomsen Salazar-Kish
- 96-99: Fridsma/Cheng
- 97-00: Miller
- 99-02: Lambert Buettner

- 90-94: Cohen/Christiansen
Planning and Executing Fast Track Projects

Converting Strategy into Action

Ongoing Stanford Project Design Research

Direct Costs

Institutional Costs

Coordination Costs

21st Century “Global Change” Projects

* Effects of Institutional Complexity

Complex, Fast-Track “Engineering Projects”

* Effects of Coordination complexity

$, ¥, €, …
Planning and Executing Fast Track Projects

Converting Strategy into Action