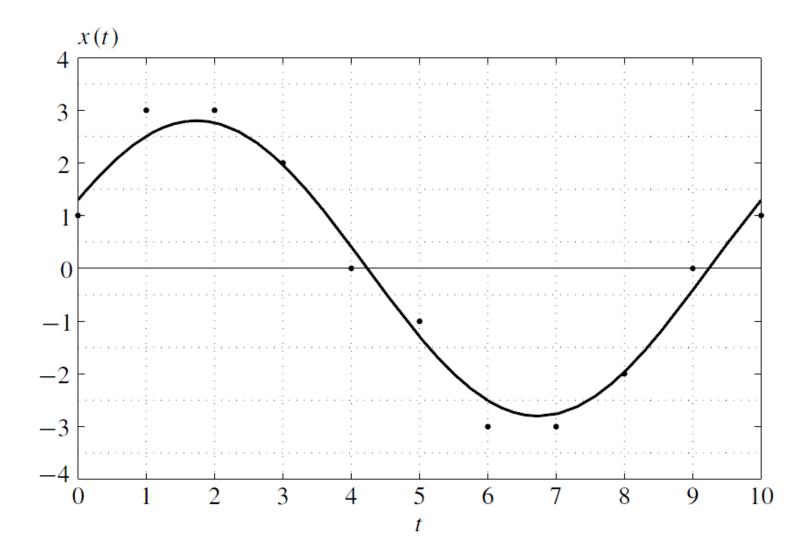
Quantization Noise

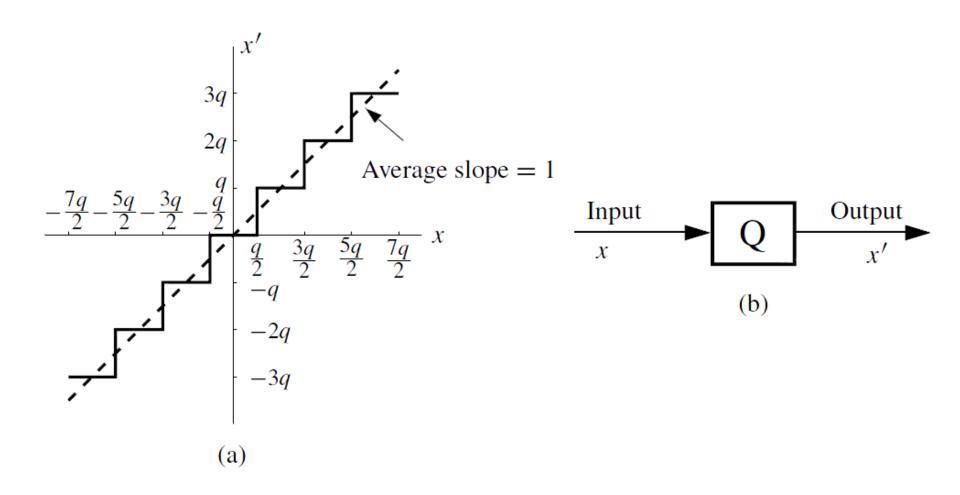
Bernard Widrow

Information Systems Laboratory Department of Electrical Engineering Stanford University

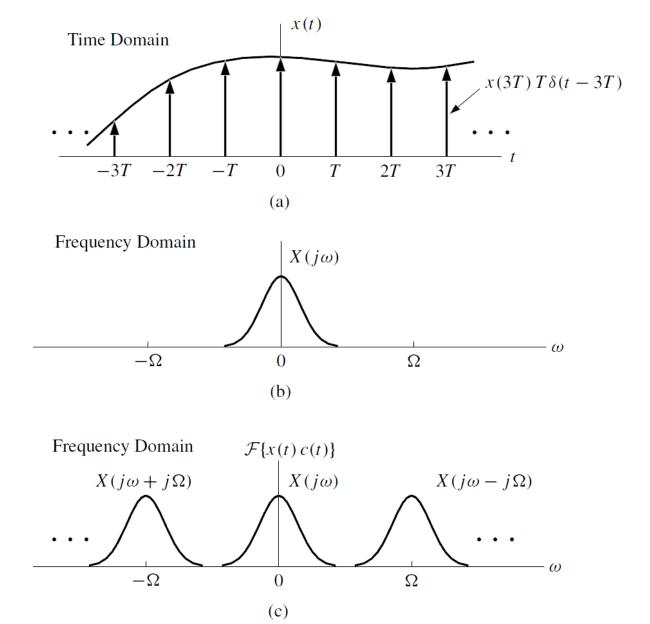
Sampling and Quantization



A Basic Quantizer

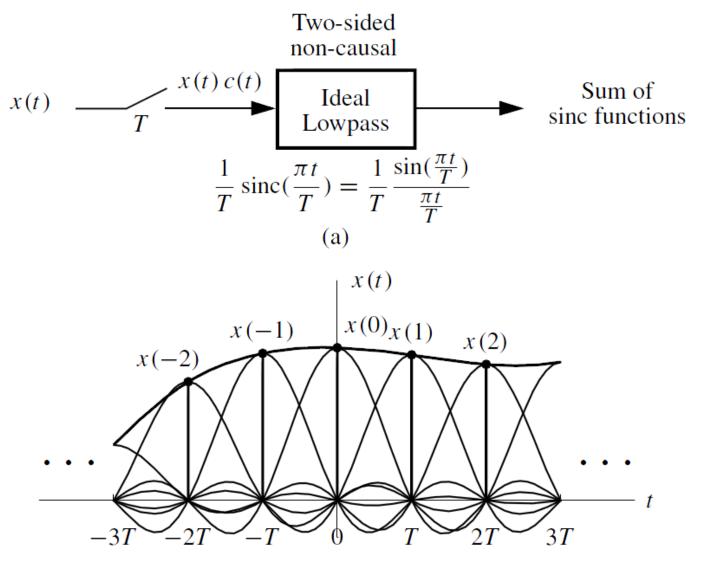


Fourier Transform of a Sampled Function



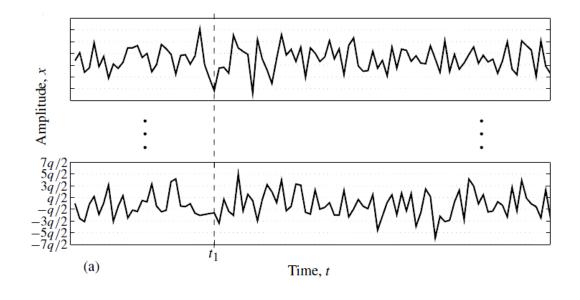
4

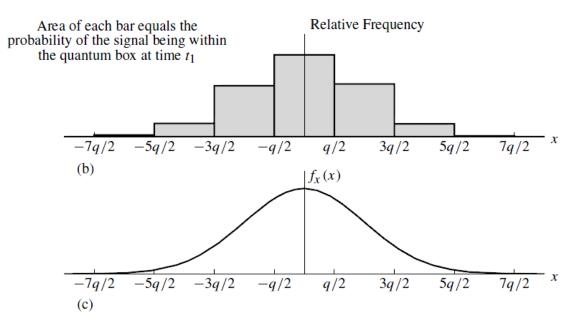
Recovery of Original Signal



(b)

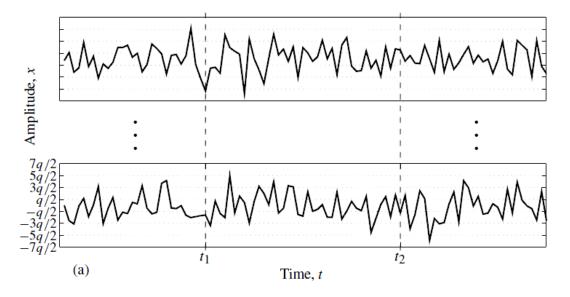
Derivation of a Histogram



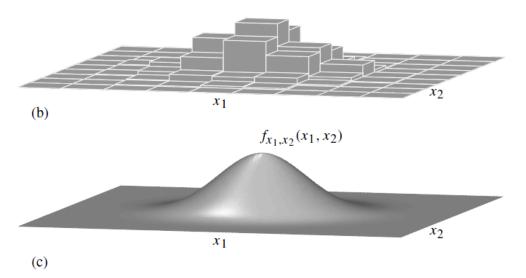


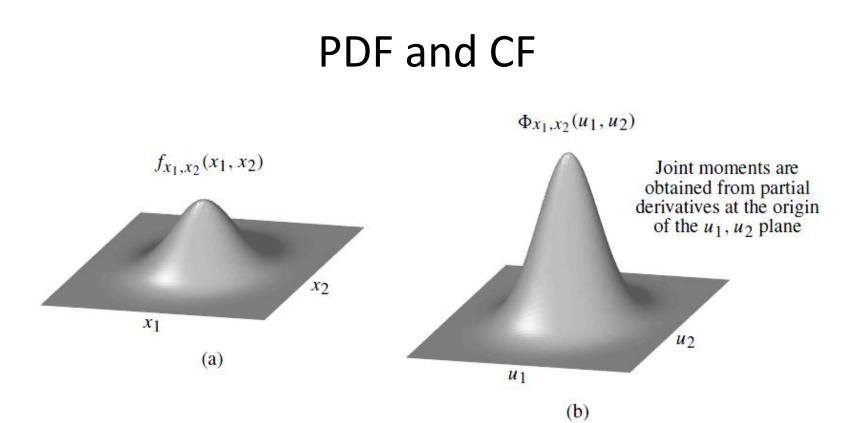
6

Derivation of a Two-Dimensional Histogram



Relative Frequency



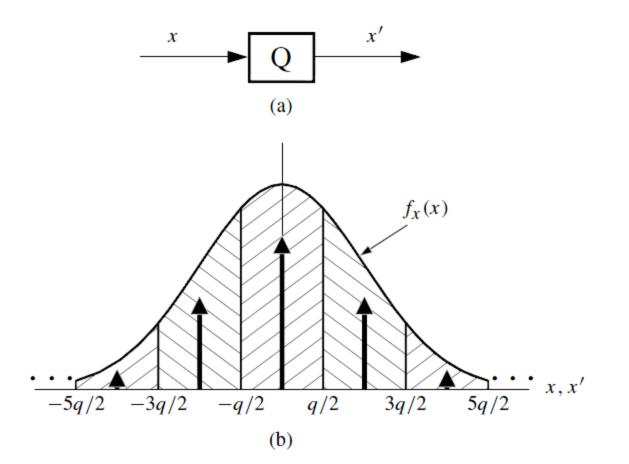


$$\Phi_{x_1,x_2}(u_1, u_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x_1,x_2}(x_1, x_2) e^{j(u_1x_1 + u_2x_2)} dx_1 dx_2$$

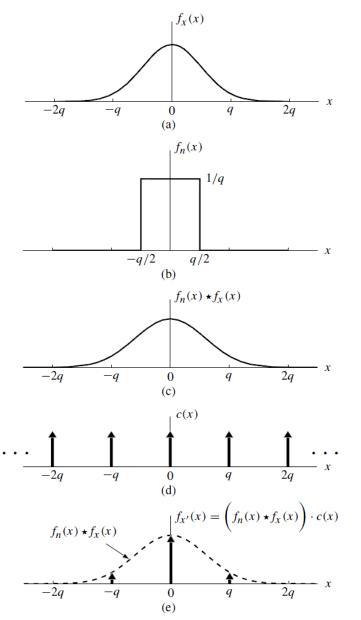
= E{ $e^{ju_1x_1 + ju_2x_2}$ }.

$$\mathbf{E}\{x_1^k x_2^l\} = \frac{1}{j^{k+l}} \frac{\partial^{k+l} \Phi_{x_1, x_2}(u_1, u_2)}{\partial u_1^k \partial u_2^l} \bigg|_{\substack{u_1 = 0\\ u_2 = 0}}$$

The PDF of the Quantizer Output x'"Area Sampling"

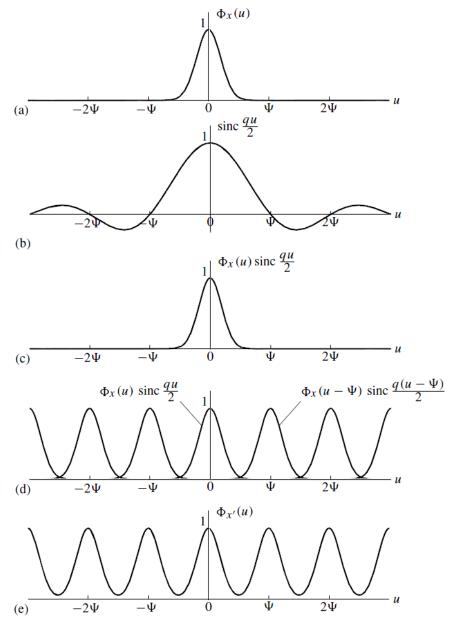


Derivation of PDF of x' from Area Sampling



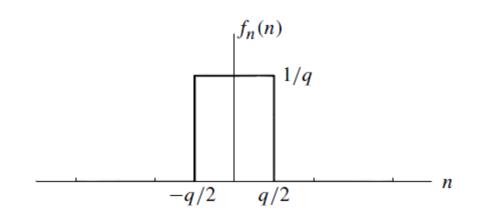
10

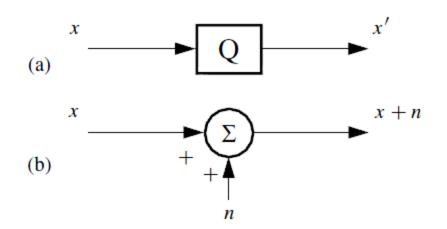
Area Sampling in the CF Domain



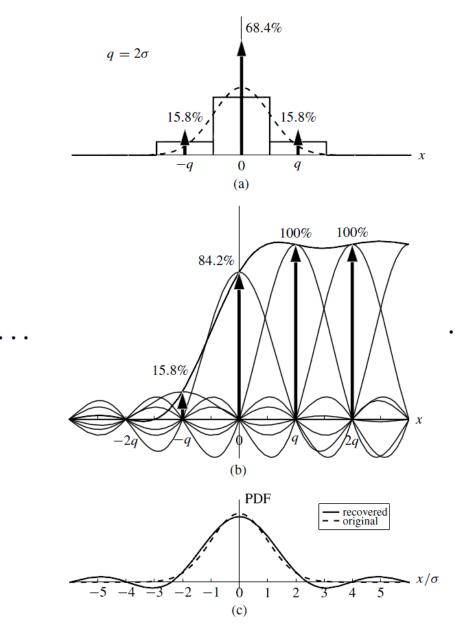
11

PQN Model



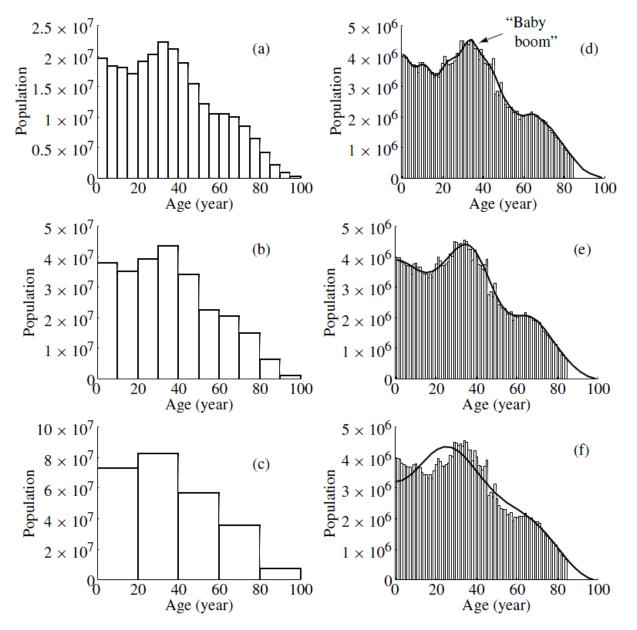


Original PDF from the Quantizer PDF

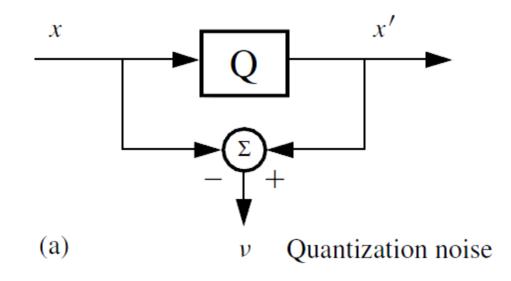


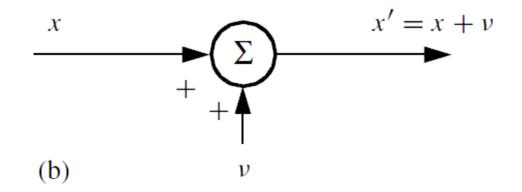
13

Reconstruction of 1990 U.S. Census Data

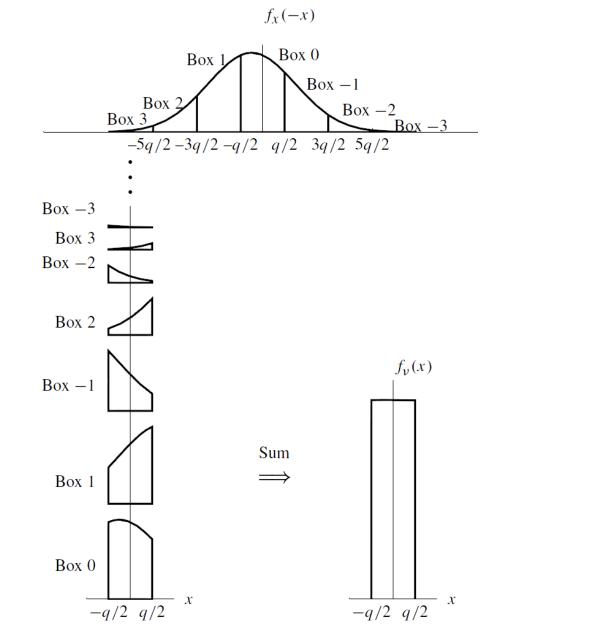


Quantization Noise



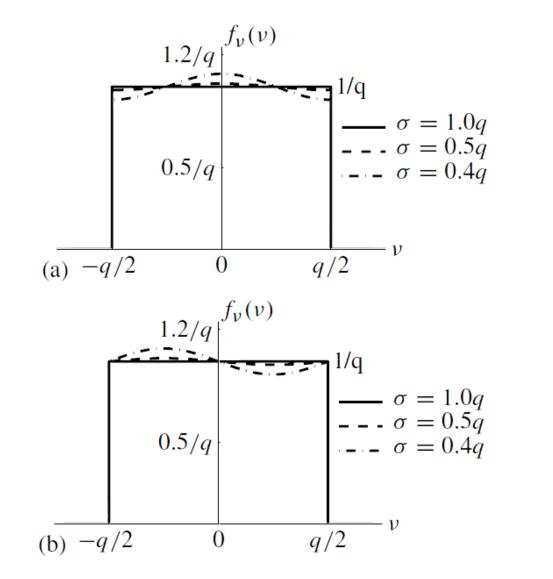


Construction of the PDF of Quantization Noise



16

PDF of Quantization Noise with Gaussian Input



17

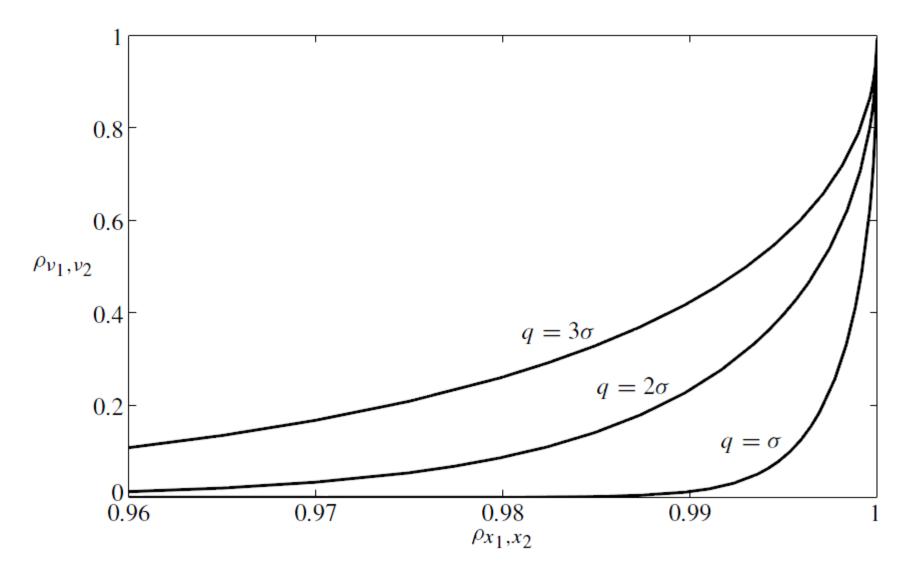
Moments of Quantization Noise with Gaussian Input

	E{v}	$E\{v^2\}$		$E\{v^3\}$	$E\{v^4\}$		
$q = 2\sigma$	0	$\left(\frac{1}{12} - 7.3 \cdot 10^{-4}\right) q^2$		0	$\left(\frac{1}{80} - 3.6 \cdot 10^{-5}\right) q^4$		
$q = 1.5\sigma$	0	$\left(\frac{1}{12}-\right)$	$1.6 \cdot 10^{-5} \right) q^2$	0	$\left(\frac{1}{80} - 7.7 \cdot 10^{-7}\right) q^4$		
$q = \sigma$	0	$\left(\frac{1}{12} - 2.7 \cdot 10^{-10}\right) q^2$		0	$\left(\frac{1}{80} - 1.3 \cdot 10^{-11}\right) q^4$		
$q = 0.5\sigma$	0	$\left(\frac{1}{12} - 5.2 \cdot 10^{-36}\right) q^2$		0	$\left(\frac{1}{80} - 2.5 \cdot 10^{-37}\right) q^4$		
	E{v}		$E\{v^2\}$	$E\{v^3\}$		$E\{\nu^4\}$	
$q = 2\sigma$				$-2.2 \cdot 10^{-4} q^3$			
$q = 1.5\sigma$	$-4.9 \cdot 10^{-5}q$		$\left(\frac{1}{12} + 0\right)q^2$	$-4.8 \cdot 10^{-6} q^3$		$\left(\frac{1}{80}+0\right)q^4$	
$q = \sigma$	$-8.5 \cdot 10^{-10}q$		$\left(\frac{1}{12}+0\right)q^2$	$-8.3 \cdot 10^{-11} q^3$		$\left(\frac{1}{80}+0\right)q^4$	
$q = 0.5\sigma$	$-1.6 \cdot 10^{-35}q$		$\left(\frac{1}{12} + 0\right)q^2$	$-1.6 \cdot 10^{-36} q^3$		$\left(\frac{1}{80}+0\right)q^4$	

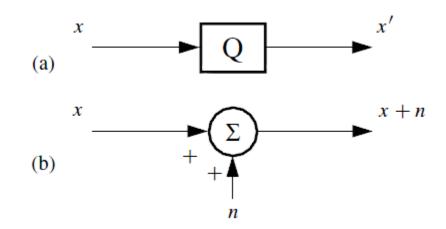
Correlation Coefficients between Gaussian Input and Noise

_	$\frac{\mathrm{E}\{x\nu\}}{\sqrt{\mathrm{E}\{x^2\}\mathrm{E}\{\nu^2\}}} \left(=\rho_{x,\nu}\right)$	$\mathrm{E}\{x'\nu\} = \mathrm{cov}\{x',\nu\}$	$\mathbf{E}\{xx'\} = \operatorname{cov}\{x, x'\}$
$q = 2\sigma$	$-2.50 \cdot 10^{-2}$	$\left(1 - 5.19 \cdot 10^{-2}\right) \frac{q^2}{12}$	$(1 - 1.44 \cdot 10^{-2}) E\{x^2\}$
$q = 1.5\sigma$	$-7.15 \cdot 10^{-4}$	$\left(1 - 1.84 \cdot 10^{-3}\right) \frac{q^2}{12}$	$(1 - 3.10 \cdot 10^{-4}) E\{x^2\}$
$q = \sigma$	$-1.85 \cdot 10^{-8}$	$\left(1 - 6.75 \cdot 10^{-8}\right) \frac{q^2}{12}$	$(1 - 5.35 \cdot 10^{-9}) E\{x^2\}$
$q = 0.5\sigma$	$-7.10 \cdot 10^{-34}$	$\left(1 - 4.98 \cdot 10^{-33}\right) \frac{q^2}{12}$	$(1 - 1.02 \cdot 10^{-34}) E\{x^2\}$

Relationship between ρ_{v_1,v_2} and ρ_{x_1,x_2}



Comparison of Quantization and PQN



$$\Phi_{x,\nu,x'}(u_x, u_\nu, u_{x'}) = \sum_{l=-\infty}^{\infty} \Phi_{x,n,x+n}(u_x, u_\nu, u_{x'}+l\Psi).$$

This is the fundamental relation between the CFs of quantization and PQN. What Eq. (7.82) tells us is that the three-dimensional CF for quantization is periodic along the $u_{x'}$ -axis, and aperiodic along the u_x and u_v -axes. If we could draw it, we would see that it is an infinite sum of replicas of the three-dimensional CF of PQN displaced by integer multiples of Ψ along the $u_{x'}$ -axis. Recall that Ψ is the quantization "radian frequency," equal to $\Psi = 2\pi/q$. Periodicity of the CF results from the fact that x' can only exist at uniformly spaced discrete levels.

Joint CF for Quantization

$$\Phi_{x_1,...,x_N,\nu_1,...,\nu_N,x'_1,...,x'_N}(u_{x_1},\ldots,u_{x_N},u_{\nu_1},\ldots,u_{\nu_N},u_{x'_1},\ldots,u_{x'_N})$$

= $\sum_{l_1=-\infty}^{\infty}\cdots\sum_{l_N=-\infty}^{\infty}\Phi_{x_1,...,x_N,n_1,...,n_N,x_1+n_1,...,x_N+n_N}(u_{x_1},\ldots,u_{x_N},u_{\nu_1},\ldots,u_{\nu_N},u_{x'_1}+l_1\Psi_1,\ldots,u_{x'_N}+l_N\Psi_N).$

Uniform Quantization Summary

• If QT II is satisfied, the PQN model applies

Quantization of one variable:

- v is uniformly distributed
- E{v} = 0
- $E\{v^2\} = q^2/12$
- $cov{x v} = 0$

Quantization of two variables:

- All of the above applies to each of the variables
- $E\{v_1 v_2\} = 0$

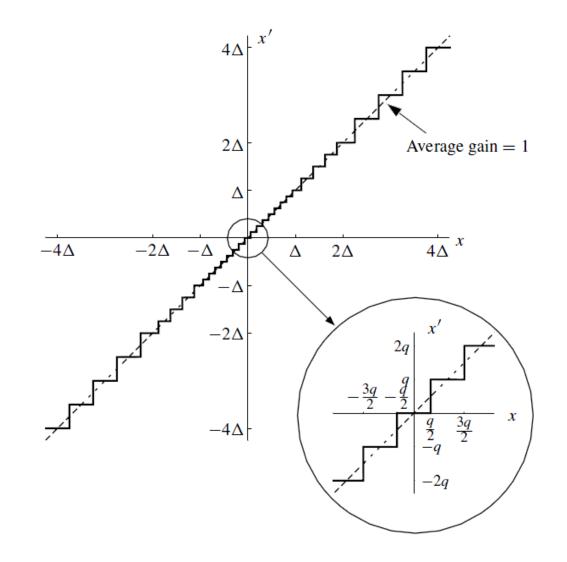
• Quantization of three or more variables:

- $E\{v_1 ... v_N\} = 0$
- If PQN applies, the quantizer may be replaced for purposes of analysis by a source of additive independent white noise.

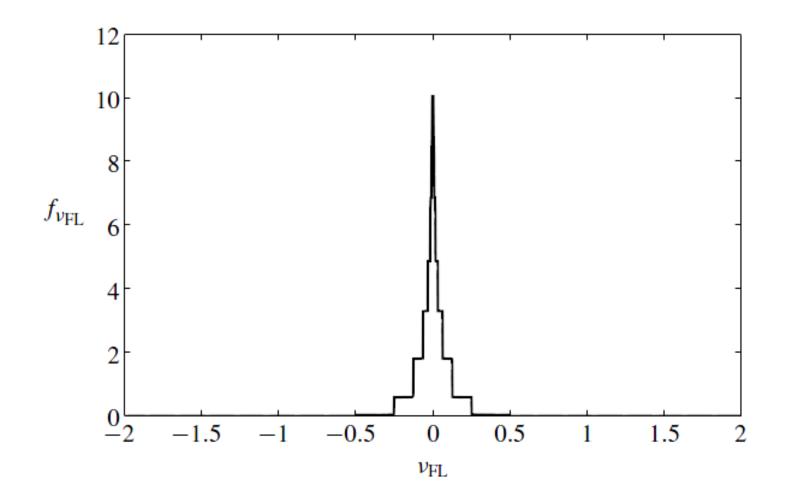
Counting with Binary Floating-Point Numbers with a 5-bit Mantissa

Mantissa							
0		0	0	0	0	0	1
1		0	0	0	0	1	
2		0	0	0	1	0	
3		0	0	0	1	1	
4		0	0	1	0	0	
5		0	0	1	0	1	
6		0	0	1	1	0	
7		0	0	1	1	1	
8		0	1	0	0	0	
9		0	1	0	0	1	
10		0	1	0	1	0	
11		0	1	0	1	1	
12		0	1	1	0	0	
13		0	1	1	0	1	
14		0	1	1	1	0	
15		0	1	1	1	1	$\times 2^{E}$
16	\rightarrow	1	0	0	0	0	(^2
17		1	0	0	0	1	
18		1	0	0	1	0	
19		1	0	0	1	1	
20		1	0	1	0	0	
21		1	0	1	0	1	
22		1	0	1	1	0	
23		1	0	1	1	1	
24		1	1	0	0	0	
25		1	1	0	0	1	
26		1	1	0	1	0	
27		1	1	0	1	1	
28		1	1	1	0	0	
29		1	1	1	0	1	
30		1	1	1	1	0	
31	←	1	1	1	1	1	J

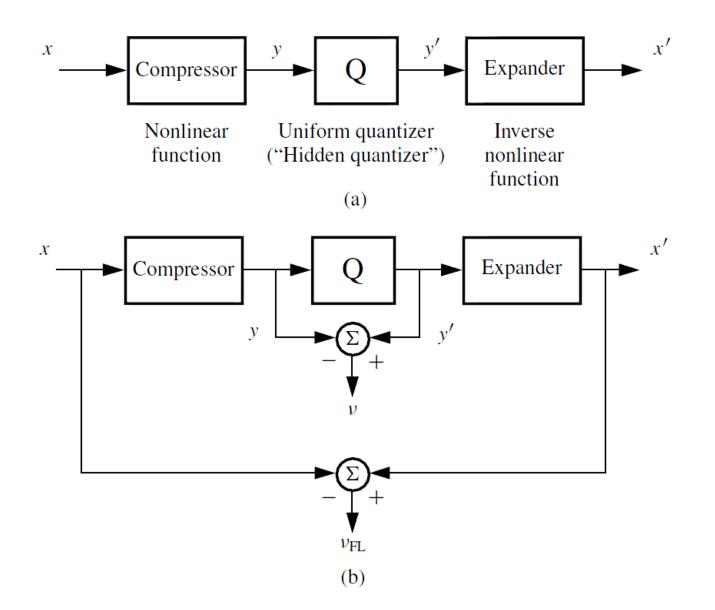
A Floating-Point Quantizer with a 3-bit Mantissa



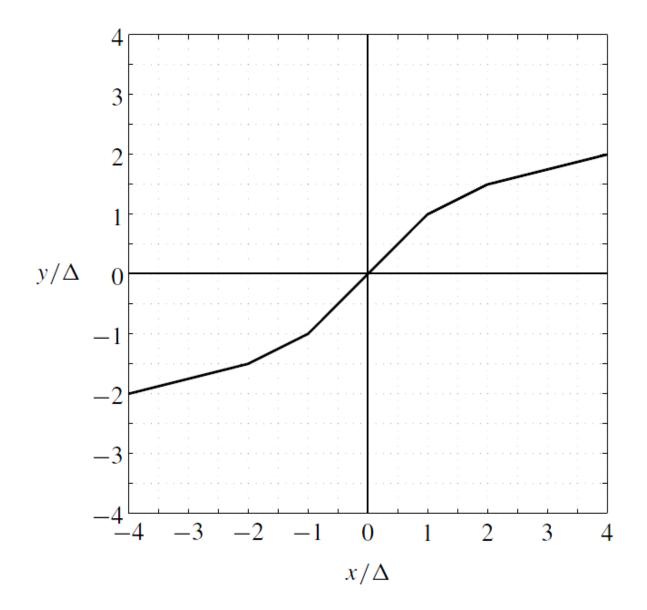
PDF of Floating-Point Quantization Noise



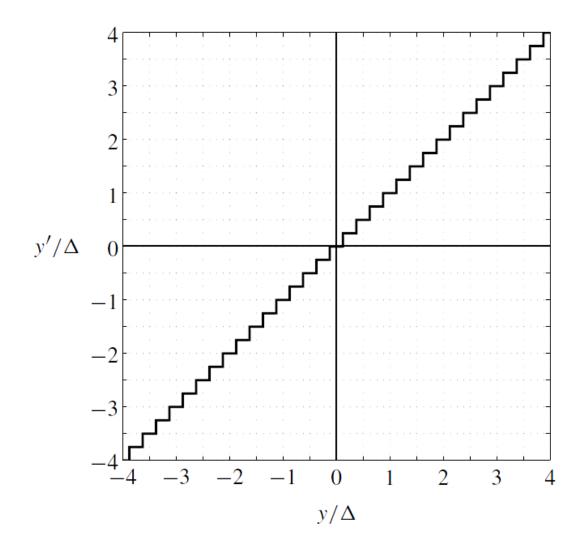
A Model of a Floating-Point Quantizer



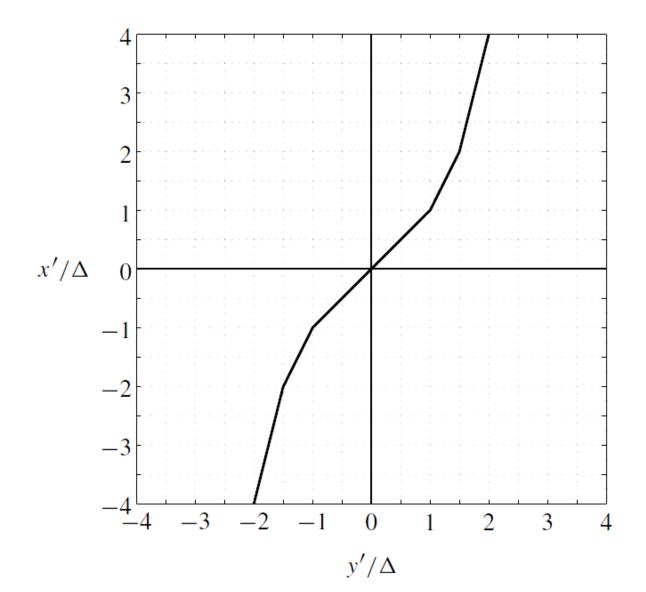
The Compressor's Input-Output Characteristic



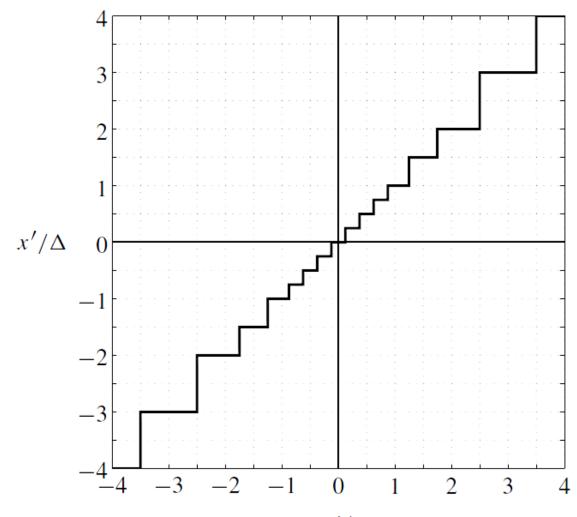
The Uniform "Hidden Quantizer" with a 2-bit Mantissa



The Expandor's Input-Output Characteristic

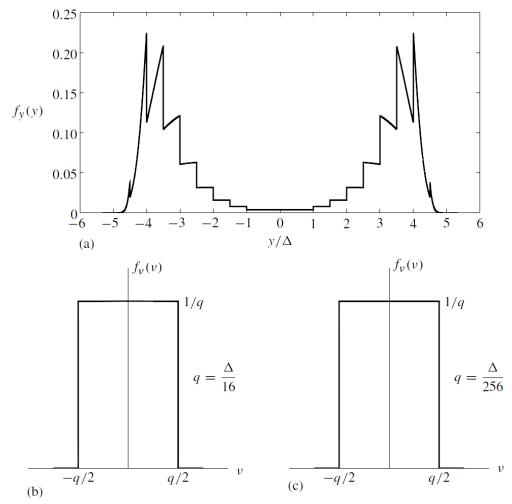


A Floating-Point Quantizer with a 2-bit Mantissa



 x/Δ

Compressor Output and Hidden Quantization Noise



PDF of compressor output and of hidden quantization noise when x is zeromean Gaussian with $\sigma_x = 50\Delta$: (a) $f_y(y)$; (b) $f_v(v)$ for p = 4 ($q = \Delta/16$); (c) $f_v(v)$ for p = 8 ($q = \Delta/256$).

Floating-Point Quantization Summary

• When the PQN model applies to the "hidden quantizer":

• Quantization of one variable:

 V_{FL} is "skyscraper - distributed" $E\{v_{FI}\}=0$ $\left(\frac{1}{12}\right)2^{-2p} \mathbf{E}\left\{x^{2}\right\} \leq \mathbf{E}\left\{v_{FL}^{2}\right\} \leq \left(\frac{1}{3}\right)2^{-2p} \mathbf{E}\left\{x^{2}\right\}$ $E\{v_{FL}^2\}\approx 0.180\times 2^{-2p}E\{x^2\}$ $SNR = \frac{E\{x^2\}}{E\{v_{rr}^2\}}$ $3 \times 2^{2p} \le SNR \le 12 \times 2^{2p}$; $SNR \approx 5.55 \times 2^{2p}$ With a 6 - bit mantissa, $SNR \approx 5.55 \times 2^{2p} = 2.38 \times 10^{10} (104 \text{ dB})$ $\operatorname{cov}\{xv_{FI}\}=0$

Quantization of multiple variables:

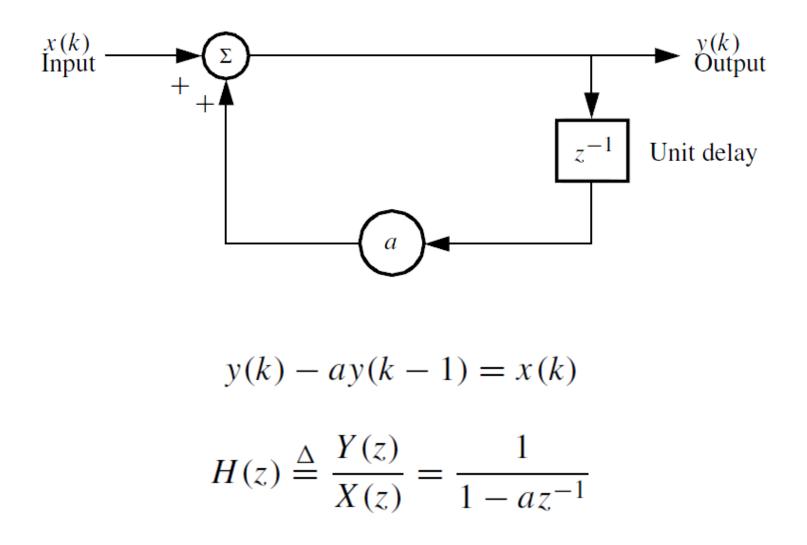
All of the above applies to each of the variables $E\{v_{FL_1}v_{FL_2}\cdots v_{FL_N}\}=0$

PQN Model for "Hidden Quantizer" Works!

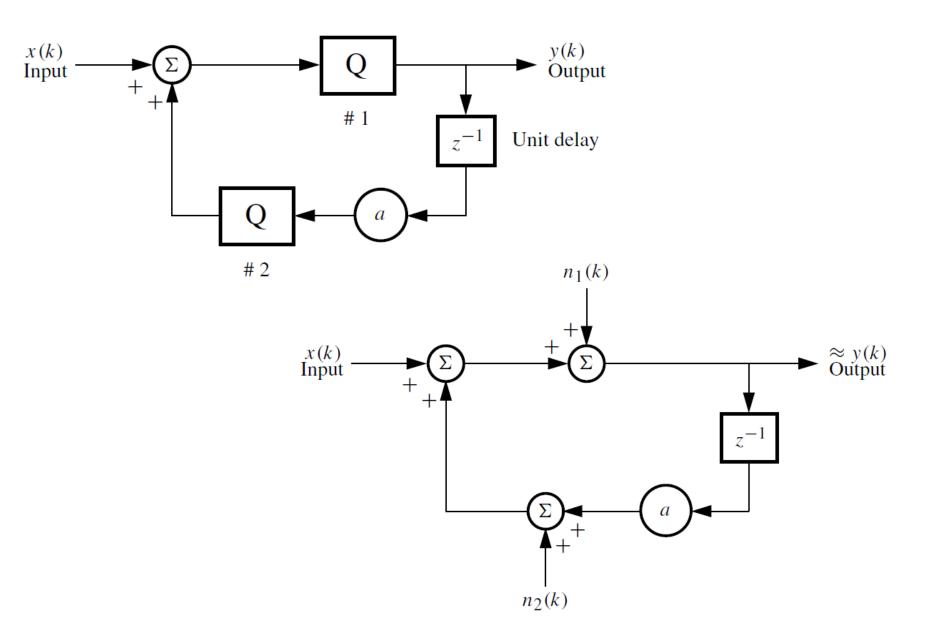
	Mean of	Normalized mean square of	Correlation coefficient of v _{FL1} and x	Correlation coefficient of v _{FL1} and v _{FL2}		
	noise	quantization noise:		ρ _{x1,x2} = 0.99	ρ _{x1,x2} = 0.999999	
Gaussian	0	0.181	3 x 10 ⁻³	< 10 ⁻⁶	< 10 ⁻³	
Triangular- Distributed	0	0.189	6 x 10 ⁻⁴			
Rectangular- Distributed	0	0.199	6 x 10 ⁻⁴			
Sinusoidal	0	0.166	1 x 10 ⁻²	10-2	10-1	

Zero-mean input and 16-bit mantissa for floating-point quantizer.

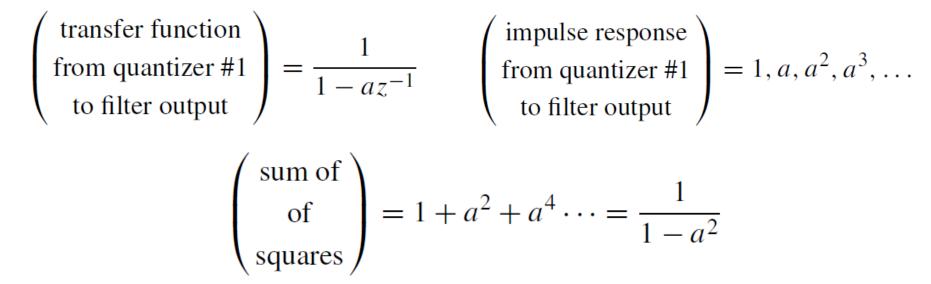
Roundoff in Digital Filters



Implementation and Analysis



Quantizer Noise Power



Assuming a white, Gaussian, zero-mean input, the noise power of each quantizer is:

$$\frac{q^2}{12} \cdot \begin{pmatrix} \text{sum} \\ \text{of} \\ \text{squares} \end{pmatrix} = \frac{q^2/12}{1-a^2}$$

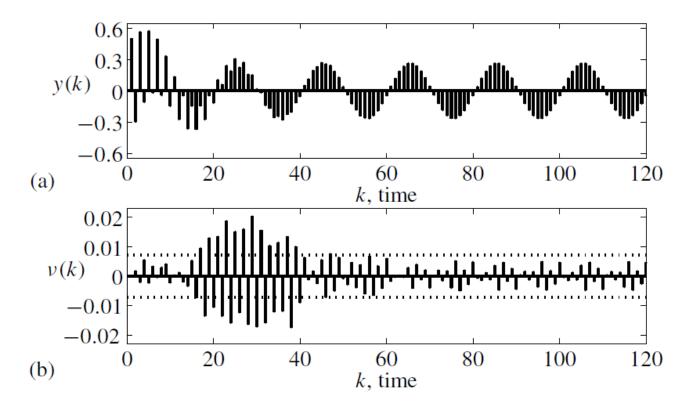
Since both quantizers generate the same noise power, the total noise at the output is:

$$\begin{pmatrix} \text{total} \\ \text{output} \\ \text{quantization} \\ \text{noise power} \end{pmatrix} = \frac{q^2/6}{1-a^2}$$

Signal-to-Noise Ratio (SNR)

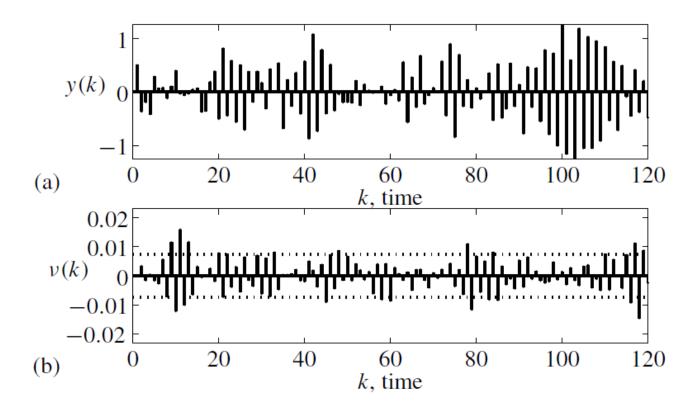
$$\begin{pmatrix} \text{output} \\ \text{SNR} \end{pmatrix} = \frac{\frac{1}{2}(\frac{A}{1-a})^2}{(\frac{q^2/6}{1-a^2})} \\ = \frac{\frac{1}{2}q^2 2^{22}}{(\frac{q^2/6}{1-a^2})} \\ = (1-a^2)3 \cdot 2^{22} \\ = 1.26 \cdot 10^7 (1-a^2) \\ = 71.0 + 10 \log_{10}(1-a^2) \text{ dB} \end{cases}$$

Example with Sine Wave Input



Response to a sine wave with frequency 1/20 the sample rate applied to the one-pole filter on the previous slides. Input begins at k = 0; quantizers are 8-bit working on the amplitude range [-1, 1]; parameter a = 0.11101 in binary (approximately 0.906). (a) output response; (b) output quantization noise, with theoretical standard deviations marked with dotted lines.

Example with Gaussian Input



Response to a white-noise zero-mean Gaussian input with $\sigma = 0.25$ applied to the one-pole filter on the previous slides. Input begins at k = 0; quantizers are 8-bit working on the amplitude range [-1, 1]; parameter a = 0.11101 in binary (approximately 0.906). (a) output response; (b) output quantization noise, with theoretical standard deviations marked with dotted lines.

Quantization Noise

Roundoff Error in Digital Computation, Signal Processing, Control, and Communications

> Bernard Widrow István Kollár

