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Learned Image/Video Compression 

 Deep Learning (DL)-based compression       

 Neural networks as backbone of the compression system

 DL-assisted compression 

 DL techniques for enhancing conventional codecs without 
changing their design

 Hybrid schemes 

 DL-based tools in traditional codecs
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Deep Compression Papers

 Deep image/video compression is attracting attention

 150 papers on deep image compression since 2017

 Most adopt the autoencoder-based framework 
with hyperprior

 40 papers on deep video compression since 2019

 Potential techniques are still being researched

 Pixel/feature-domain residual and conditional 
coding are popular approaches
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Variational Autoencoder (VAE)

 A generative model that forms the basis of most 
learned image/video compression systems
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Encoding distribution
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Generative Adversarial Network (GAN)
 Two neural networks playing against each other

 Generator (e.g. learned image codec) 

 Discriminator (evaluator)

 Latent variables  Generator generated image

 Real/Fake inputs  Discriminator identify fake!
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Neural Networks for Image Compression?

Source: Mentzer et al., “High-Fidelity Generative Image Compression (HIFIC),“ NIPS 20209

https://hific.github.io/

 Neural networks are good at synthesizing image details

 They are amenable to any differentiable quality metric

BPG (HEVC Intra)Learned



How Good is Learned Image Compression? 
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BPG (HEVC Intra)

VVC Intra

Learned (MSE)

Kodak

Top performer (CVPR’23): 12% bit rate saving over VVC Intra



Reference

 Liu et al., “Learned Image Compression with Mixed Transformer-

CNN Architectures,” CVPR 2023

 He et al., “ELIC: Efficient Learned Image Compression With 

Unevenly Grouped Space-Channel Contextual Adaptive Coding,” 

CVPR 2022

 Ho et al., “ANFIC: Image Compression Using Augmented 

Normalizing Flows,” OJCAS 2021

 Ma et al., “End-to-End Optimized Versatile Image Compression 

With Wavelet-Like Transform,” TPAMI 2020

 Cheng et al., “Learned Image Compression with Discretized 

Gaussian Mixture Likelihoods and Attention Modules,” CVPR 

2020
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How Good is Learned Video Compression? 
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Learned (MSE)

VVC (LDP) 

Top performer (CVPR’23): 55% bit rate saving over VVC LDP

Intra Period = 32

< 2 years!



Reference

 DCVC-DC: Li et al., “Neural Video Compression with Diverse 

Contexts,” CVPR 2023.

 DCVC-HEM: Li et al., “Hybrid Spatial-Temporal Entropy 

Modelling for Neural Video Compression,” ACM MM 2022

 DCVC-TCM: Sheng et al. “Temporal Context Mining for 

Learned Video Compression,” IEEE TMM 2022

 CANF-VC/CANF-VC++: Ho et al., “CANF-VC: Conditional 

Augmented Normalizing Flows for Video Compression,” 

ECCV 2022

 DCVC: Li et al., “Deep Contextual Video Compression,” 

NeurIPS 2021
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Challenge on Learned Image Compression

 CLIC 2018 targeted image coding @ 0.15bpp

 CLIC 2019 included transparent track (PSNR>40dB)

 CLIC 2020 introduced P-frame track (1 P-frame@0.075 bpp)

 CLIC 2021 introduced video coding track (2-sec videos@30Hz) 

and multi-rate image coding track (0.075, 0.15, 0.3 bpp)

 CLIC 2022 introduced video coding track (1 mbps & 0.1 mbps for 

720p/1080p@15-60fps) and multi-rate image coding track 

(0.075, 0.15, 0.3 bpp)
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JPEG AI Call-for-Proposals (CFP)

 To complete a learning-based image coding standard by 2024, 

targeting human perception and effective performance for 

image processing and computer vision tasks

17 “Final Call for Proposals for JPEG AI,” ISO/IEC JTC 1/SC29/WG1 N100095, Jan 2022

Decoded image latents



Status and Timeline

18

 Call-for-Proposals concluded in July 2022
 10 responses evaluated objectively and subjectively 

 MS-SSIM, IW-SSIM, VIF, NLPD, PSNR-HVS-M, VMAF, FSIM

 DSCQS method, 280+ subjects

 4 parts to be included
 Part 1 – Core Coding System

 Part 2 – Profiling

 Part 3 – Reference Software 

 Part 4 – Conformance

 2 versions to be standardized
 v1 focuses on image reconstruction (Int’l Standard: Apr. 2024)

 v2 addresses compressed-domain vision/processing tasks and
better coding efficiency (Int’l Standard: Jan. 2026)



JPEG AI VM-2.1

19 Source: ??

JPEG AI VM2.1_0.75 bpp VVC_0.75 bpp



JPEG AI VM-2.1
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5 points  BD-rate (0.06, 0.12, 0.25, 0.5, 0.75) 10%
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Notable Works
 J. Ballé et al., "Variational Image Compression with a Scale Hyperprior," ICLR 

2018.

 D. Minnen et al., "Joint Autoregressive and Hierarchical Priors for Learned 

Image Compression,” NIPS 2018.

 Y. Ho et al., “ANFIC: Image Compression Using Augmented Normalizing 

Flows,” OJCAS 2021.

 Y. Zhu et al., “Transformer-based Transform Coding,” ICLR 2022.

 D. He et al., “ELIC: Efficient Learned Image Compression with Unevenly 

Grouped Space-Channel Contextual Adaptive Coding,” CVPR 2022. 

 D. He et al., “Checkerboard context model for efficient learned image 

compression,” CVPR 2021.

 D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for 

learned image compression,” ICIP 2020.
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VAE-based Compression with “Hyperprior”
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Quant.

Variational Autoencoder (VAE) Hyperprior Autoencoder

Hyperprior
Encoder

Balle et al., “Variational image compression with a scale hyperprior,” ICLR 2018. 

Main 
Encoder

Main
Decoder

Hyperprior
Decoder

Image latents Side Info.



Main Encoder and Decoder

24

 Encoder works as an
analysis transform to 
condense the image 
information

 Decoder - “inverse of 
Encoder” - synthesizes
an approximation of the 
original input



Hyperprior Encoder and Decoder 
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 Hyper-encoder produces 
hyperprior z = {𝑧𝑖} from 
image latents 𝑦 = {𝑦𝑖} as 
side information

 Hyper-decoder decodes 
quantized z to output 
distribution parameters 
of image latents 𝑦

Distribution parameters



Distributions of Hyperprior z

 Assumptions

 𝑝(𝑧) is factorial

 𝑝(𝑧𝑖) is identically distributed

 Cumulative Distribution Function (CDF) of 𝑧𝑖 is learned
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Neural 

Network
𝑧𝑖 𝐶𝐷𝐹(𝑧𝑖)

𝑝( Ƹ𝑧𝑖) = 𝐶𝐷𝐹 Ƹ𝑧𝑖 +
1
2 − 𝐶𝐷𝐹 Ƹ𝑧𝑖 −

1
2

Prob. of quantized hyperprior Ƹ𝑧𝑖: 



Conditional Distributions of Image Latents 𝒚

 Assumptions

 p(y| Ƹ𝑧) is fully factorial along channel and spatial dimensions

 p(𝑦𝑖| Ƹ𝑧) is Gaussian with mean zero and scale derived from Ƹ𝑧
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Hyperprior
Decoder

Ƹ𝑧 𝜎𝑖

𝑦𝑖 ~𝒩(0, 𝜎𝑖)

Probability
of ෝ𝒚𝒊

AC

ො𝑦𝑖

Bitstream

ො𝑦𝑖 +1/2ො𝑦𝑖 −1/2

𝑝(ො𝑦𝑖| Ƹ𝑧) = න
ො𝑦𝑖−1/2

ො𝑦𝑖+1/2

𝒩 𝑦𝑖; 0, 𝜎𝑖( Ƹ𝑧) 𝑑𝑦𝑖Prob. of quantized latent ො𝑦𝑖:

J. Ballé et al., "Variational Image Compression with a Scale Hyperprior," ICLR 2018.



Quantization

 Rounding to the nearest integer at inference time, i.e. 
uniform quantization with step size 1

 Differentiable approximation during training

 Additive uniform noise: to mimic quantization noise; e.g., End-
to-end optimized image compression,” ICLR2017 

 Stochastic rounding: quantized value + noise; e.g., Lossy image 
compression with compressive autoencoders, ICLR2017

 Soft quantization: continuous approximation to hard quantizer; 
e.g., Soft-to-Hard Vector Quantization for End-to-End Learning 
Compressible Representations, NIPS2017
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Training Objective

 A weighted sum of distortion 𝐿𝐷 and rate 𝐿𝑅

 𝑳𝑫 − any differentiable metric, e.g. MSE, MS-SSIM, 
perceptual loss, and adversarial loss

 𝑳𝑹 − the rate needed to signal the image latents 
− 𝐥𝐨𝐠𝒑 ෝ𝒚|ො𝒛 and hyperprior − 𝐥𝐨𝐠𝒑 ො𝒛

29

𝐿 = 𝐿𝐷 𝑥, ො𝑥 + 𝜆 × 𝐿𝑅 ( ො𝑦, Ƹ𝑧)



Context Model (1/2)

 𝑝(𝑦| Ƹ𝑧) is non-factorial along the spatial dimension

 𝑝(𝑦𝑖| Ƹ𝑧, ො𝑦<𝑖) is Gaussian with mean and scale derived from 
hyperprior Ƹ𝑧 and previously coded image latents ො𝑦<𝑖

30
Source: D. Minnen et al., “Joint Autoregressive and Hierarchical Priors for Learned 
Image Compression,” NIPS18.

“Mean” and “Scale” 
predictions

Hyperprior

Coded latents



Context Model (2/2)

 To condition the mean and scale predictions based on 
hyperprior and previously coded latents ො𝑦<𝑖

31

Previously coded latents ෝ𝒚𝒊

Source: A. van den Oord et al., “Conditional image generation with pixelcnn decoders,” 

NIPS16



Rate-Distortion Comparison
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Source: D. Minnen et al., “Joint Autoregressive and Hierarchical Priors for Learned Image 

Compression,” NIPS18.

Context + Hyperprior

Mean + Scale Hyperprior

(Non-zero mean)

Scale Hyperprior

(Zero mean)

~10%



Issues of the Context Model

 NOT parallel-friendly for decoding

Mean and variance prediction has to be done one-by-one

 Uni-directional context due to causality

 Samples can only be referenced from one direction 

33

Previously coded latents ෝ𝒚𝒊
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Checkerboard Context Model

 Split latents into two slices along the spatial dimension

 Slice 1 (anchor) uses hyperprior to derive coding probabilities

 Slice 2 (non-anchor) refers to Slice 1, hyperprior as context

35

Source: D. He et al., “Checkerboard context model for efficient learned image compression,” 

CVPR 2021



Remarks

 Mean and variance prediction in each slice is done in parallel

 Slice 1 (50% of samples) refers to hyperprior only

 Slice 2 (remaining 50%) refers to bi-directional context

 Decoding time is very close to using hyperprior only

 Rate saving decreases by 2-3% (w.r.t. the context model)
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Channel-wise Context Model

 Split latents into two slices along the channel dimension 

 Slice 1 uses hyperprior to derive coding probabilities

 Slice 2 refers to Slice 1 and hyperprior as context

37

Source: D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for learned 

image compression,” ICIP 2020

Slice 1Slice 2 Hyperprior



Spatial-channel Context Model

 Split latents into non-even slices along the channels

 Apply spatial-channel context in each slice

 Ex: Checkerboard-channel context

38

Source: D. He et al., “ELIC: Efficient Learned Image Compression with Unevenly Grouped 

Space-Channel Contextual Adaptive Coding,” CVPR 2022.

Slice 1 Slice 2 Slice 3 (Checkerboard)

Channel dimension
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Swin-Transformer as Non-linear Transform 

 As compared to ConvNet, Swin-Transformer offers

 Flexible receptive fields

 Non-stationary, content-adaptive convolution

 Short- and long-range attentions with shifted windows

40
Source: Y. Zhu et al., “Transformer-based Transform Coding,” ICLR 2022.

Rate saving 
vs. 

MACs/pixel for decoding



Flow-based Coding Frameworks

 H. Ma et al., “End-to-End Optimized Versatile Image 
Compression with Wavelet-Like Transform,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

 Y.-H. Ho et al., "ANFIC: Image Compression Using Augmented 
Normalizing Flows," IEEE Open Journal of Circuits and Systems 
(OJCAS), Dec. 2021.
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ANFIC in a Nutshell

[Ho et al. OJCAS 2021]

 Learn image distribution p(x)

 Employ a stack of additive 
autoencoding transforms 

 Use augmented noise 𝑒𝑧 to 
convert input 𝑥 into 𝒙𝟐 ≈ 𝟎

 Encode the latents Ƹ𝑧2, ෠ℎ2 into 
a bitstream

Autoencoding
Transform

Autoencoding
Transform

Hyperprior
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Additive Autoencoding Transform: Forward

[Ho et al. OJCAS 2021]

+

+

−

−

≈ 𝟎

Encoder

 Additive autoencoding
transform + Hyperprior

 Use augmented noise 𝑒𝑧 to 
convert input 𝑥 into 𝒙𝟐 ≈ 𝟎

 Encode the latents Ƹ𝑧2, ෠ℎ2 into 
a bitstream

Input Image Initial Latent

Decoder

VAE
1

VAE
2 Hyperprior
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Additive Autoencoding Transform: Inverse

[Ho et al. OJCAS 2021]

−

−

+

+  Addition  Subtraction

 Subtraction  Addition 

= 𝟎

VAE
1

VAE
2 Hyperprior
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Rate-Distortion Performance

46

VVC

ANFIC

BPG

CVPR’20 

(VAE-based)

Kodak dataset

NIPS’18 

(VAE-based)
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Residual-based Coding Framework

Flow Estimation
Network

Residual Coding Network

Motion Comp. 
Network

Flow Coding 
Network

Source: Lu et al., “DVC: An end-to-end deep video compression framework,” CVPR 201948



Notable Works

 DVC/DVC-Pro: Lu et al., “DVC: An End-to-End Deep Video 
Compression Framework,” CVPR 2019; Lu et al., “An End-
to-End Learning Framework for Video Compression,” 
TPAMI 2020

 Scale-space: Agustsson et al., “Scale-space Flow for End-
to-End Optimized Video Compression,” CVPR 2020

 FVC: Z. Hu et al., “FVC: A New Framework towards Deep 
Video Compression in Feature Space,” CVPR 2021

 C2F-FVC: Z. Hu et al., “Coarse-to-fine Deep Video Coding 
with Hyperprior-guided Mode Prediction,” CVPR 2022
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Residual vs. Conditional Coding

51

Residual coding Conditional Coding

No evaluation of residual signals!



Conditional Coding

 Residual coding is sub-optimal from the information-
theoretic perspective

 Conditional coding aims to approach 𝐻 𝐼𝑡|𝐼𝑐
 Need to learn the conditional distribution 𝑝 𝐼𝑡 𝐼𝑐

𝐻 𝐼𝑡 − 𝐼𝑐 ≥ 𝐻 𝐼𝑡 − 𝐼𝑐|𝐼𝑐 =𝐻 𝐼𝑡|𝐼𝑐

𝐼𝑡: Coding frame
𝐼𝑐: Motion-compensated reference frame

[Ladune et al. MMSP’20][Li et al. NIPS’21]52
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HM

CANF-VC (Conditional), ECCV’22

X265

HM as anchor

Conditional vs. Residual Coding in 2022

C2F (Residual-based), CVPR’22 



Notable Works

 DCVC: J. Li et al., “Deep Contextual Video Compression,” 
NeurIPS 2021

 DCVC-TCM: X. Sheng et al., “Temporal Context Mining for 
Learned Video Compression,” IEEE TMM, 2022

 DCVC-HEM: J. Li et al., “Hybrid Spatial-Temporal Entropy 
Modelling for Neural Video Compression,” ACM MM 2022

 DCVC-DC: J. Li et al., “Neural Video Compression with Diverse 
Contexts,” CVPR 2023

 CANF-VC: Y.-H Ho et al., “CANF-VC: Conditional Augmented 
Normalizing Flows for Video Compression,” ECCV 2022

 VCT: F. Mentzer et al., “VCT: A Video Compression Transformer,” 
NeurIPS 2022

 MIMT: J. Xiang et al., “MIMT: Masked Image Modeling 
Transformer for Video Compression,” ICLR, 2023
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DCVC: Deep Contextual Video Coding

55

 J. Li, B. Li, Y. Lu (MSRA), NeurIPS 2021

 Use a conditional variational autoencoder (CVAE) for 

contextual encoding and decoding

Source: J. Li et al., “Deep Contextual Video Compression,” NIPS 2021



Conditional Variational Autoencoder

56

 Use singal concatnation as a means to achieve 

contextual encoding and decoding

Source: J. Li et al., “Deep Contextual Video Compression,” NIPS 2021

Contextual Encoder

Contextual Decoder



DCVC-TCM: Temporal Context Mining

57

 Extend DCVC by learning multi-scale conditioning 

factors from previously stored frame features

Source: X. Sheng et al., “Temporal Context Mining for Learned Video Compression,” IEEE TMM, 2022

Contextual Encoder

Contextual Decoder

Input frame

Decoded frame



DCVC-HEM

58

 An extended version of DCVC-TCM

 Spatial-channel context model for entropy coding

 Multi-granularity quantization for variable-rate coding

Source: J. Li et al., “Hybrid Spatial-Temporal Entropy Modelling for Neural Video Compression,” ACM 
MM 2022

Global 

(Adjustable)

Channel-wise 

(Learned)

Element-wise

(Learned)



CANF-VC: Conditional Augmented 
Normalizing Flows for Video Compression

 Y. H. Ho (NYCU), C. P. Chang (NYCU), P. Y. Chen (NYCU), 

A. Gnutti (Univ. Brescia), W. H. Peng (NYCU), ECCV 2022

 Adopt conditional augmented normalizing flows 
(CANF) for conditional coding

 Apply conditional coding to both motion and inter-
frame coding

59



Conditional ANF (CANF)

 Turn ANFIC into a conditional video generator

60

𝐼𝑡−1𝐼𝑡−2 𝐼𝑡

Idea: To generate 𝐼𝑡 conditionally based on 𝐼𝑡−1



≈ 𝑰𝒄

= 𝑰𝒕

Conditional Video Frame Generation

61

Hyperprior

Reference frame𝐼𝑐

Current frame𝐼𝑡



CANF for Motion and Inter-frame Coding

62



Learned Video Codecs vs. X265

x265 Learned (DVC)

Encode 7.81 25.78

Decode 0.44 16.42

7.81

25.78
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Learned codec - Encoding : Decoding ~ 1.6 : 1

X265 (HEVC)   - Encoding : Decoding ~ 17.8 : 1

Decoding time  - Learned : X265 ~ 37.3 : 1

Encoding time  - Learned : X265 ~ 3.3 : 1 

Encoding

Decoding

Encoding

Decoding

X265

DVC



Multiply-Accumulate Operations (MAC)

64

 BD-rate saving (vs. HM-16.20): The higher the better

 kMAC/pixel for encoding: The lower the better

 Encoding : Decoding = 1.5 : 1 

RTX 3080: 4K@30Hz ~ 128kMAC/pixel



Peak Memory Requirements
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 BD-rate saving (vs. HM-16.20): The higher the better

 Peak memory: The lower the better



Model Size 

66

 BD-rate saving (vs. HM-16.20): The higher the better

 Model size (I-frame NOT counted): The lower the better



Outline

 Overview of Learned Image / Video Compression

 End-to-end Learned Image Compression

 End-to-end Learned Video Compression

 Computer Vision Applications
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Notable Works 

 Single-task bitstram

 J. Liu et al., “Improving Multiple Machine Vision Tasks in the 
Compressed Domain,” ICPR 2022

 Scalable bitstream

 H Choi et al., ”Scalable Image Coding for Humans and 
Machines,” TIP 2022

 Multi-task (or many-task) bitstream

 R. Feng et al., “Image Coding for Machines with Omnipotent 
Feature Learning,” ECCV2022
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Improving Multiple Machine Vision Tasks in 
the Compressed Domain

 Train a base codec with multi-task loss (e.g. recon. + seg.)

 Encoder adopts a gate module for task-specific feature coding

 Decoder uses a transform module to adapt features to the task

 Encoder = Image Compressor + Feature Extractor

69 Source: J. Liu et al., “Improving Multiple Machine Vision Tasks in the Compressed Domain," ICPR 2022



Scalable Image Coding for Humans and Machines

 Divide image latents 𝑦 along channel dimension into 𝑦1 and 𝑦2

 Decode 𝑦1 (base layer) for machine perception

 Decode 𝑦1 + 𝑦2 (enhancement layer) for human perception

70 Source: H Choi et al., ”Scalable Image Coding for Humans and Machines,” TIP 2022

Transform module



Image Coding for Machines with Omnipotent 
Feature Learning

 Use contrastive learning to learn omnipotent features, i.e. 
features suitable for many vision tasks

 Encode omnipotent features with learned codecs

 Fine-tune recognition networks with omnipotent features

71 Source: R. Feng et al., “Image Coding for Machines with Omnipotent Feature Learning,” ECCV 2022



Omnipotent Feature Learning

 Information Filtering (IF) + Contrastive learning 

 IF: rate constrained representation learning

72 Source: R. Feng et al., “Image Coding for Machines with Omnipotent Feature Learning,” ECCV 2022

Learned feature compressor



Transfer Learning for Machine Perception

 Task: To transfer a learned codec from human perception to 
machine perception

 Adapt the feature distributions of the learned codec using 
task-specific conditions for machine perception

73

Classification

Segmentation

Single-task or multi-task bitstreams
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Base codec
(Human)
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(Machine)
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Rate-Accuracy Performance 

Classification Object Detection
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Adapted

Full finetuning
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Conclusion

 End-to-end learned image/video compression is 
progressing at light speed

 For image coding, 
 VAE-based compression with hyperprior is currently the 

most popular approach
 JPEG AI is progressing fast towards version 1
 PSNR-RGB: > VVC intra, MS-SSIM: >> VVC

 For video coding, 
 Research is still ongoing, with conditional coding emerging 

as an attractive alternative to residual coding
 More content-adaptive coding is expected
 PSNR-RGB: > VVC (LDP), MS-SSIM: >> VVC
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Conclusion

 The complexity of learned codecs is still high

 2 to 3 orders of magnitude higher than traditional 
codecs in terms of kMAC/pixel and CPU decoding time

 Many issues remain widely open

 Performance and complexity assessment

 YUV content coding

 Encoder optimization

 Rate control 

 Generalization

 Coding for machines 

 etc.
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Neural Image Compression on FPGA
 H. Sun et al, “F-LIC: FPGA-based Learned Image 

Compression with a Fine-grained Pipeline,” ASSCC 2022 

78



Thank you for your attention
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