End-to-End Learned Image and Video
Compression: Design, Implementation, and
Computer Vision Applications

Wen-Hsiao Peng
National Yang Ming Chiao Tung University (NYCU), Taiwan

May 26, 2023
Santa Clara University




e

Outline

» Overview of Learned Image/Video Compression
e End-to-end Learned Image Compression
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» Overview of Learned Image/Video Compression

e Neural network-based image/video compression
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Learned Image/Video Compression

* Deep Learning (DL)-based compression

e Neural networks as backbone of the compression system

e DL-assisted compression
e DL techniques for enhancing conventional codecs without
changing their design
e Hybrid schemes

e DL-based tools in traditional codecs
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Deep Compression Papers

* Deep image/video compression is attracting attention

e 150 papers on deep image compression since 2017

e Most adopt the autoencoder-based framework
with hyperprior

e 40 papers on deep video compression since 2019
e Potential techniques are still being researched

e Pixel/feature-domain residual and conditional
coding are popular approaches
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Transform Coding vs. Deep Coding

[DCT-based Image Codecs]
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e
Variational Autoencoder (VAE)

e A generative model that forms the basis of most
learned image/video compression systems

Encoding distribution = Decoding distribution
qe(Y|x) Po(x|y)

—-> Encoder —>E—> Decoder —>
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Generative Adversarial Network (GAN)

e Two neural networks playing against each other

e Latent variables > Generator = generated image

e Discriminator (evaluator)

e Generator (e.g. learned image codec)

* Real/Fake inputs = Discriminator = identify fake!
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Neural Networks for Image Compression?

* Neural networks are good at synthesizing image details
e They are amenable to any differentiable quality metric
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https://hific.github.io/
@ Source: Mentzer et al., “High-Fidelity Generative Image Compression (HIFIC),” NIPS 2020
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How Good is Learned Image Compression?

Bit-rate (bpp)
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How Good is Learned Video Compression?

UVG Dataset
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» Overview of Learned Image/Video Compression

e Challenge on learned image compression (CLIC)
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Challenge on Learned Image Compression

e CLIC 2018 targeted image coding @ 0.15bpp
e CLIC 2019 included transparent track (PSNR>40dB)
e CLIC 2020 introduced P-frame track (1 P-frame@0.075 bpp)

e CLIC 2021 introduced video coding track (2-sec videos@30Hz)
and multi-rate image coding track (0.075, 0.15, 0.3 bpp)

e CLIC 2022 introduced video coding track (1 mbps & 0.1 mbps for
720p/1080p@15-60fps) and multi-rate image coding track
(0.075, 0.15, 0.3 bpp)
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* Overview of Learned Image / Video Compression

e JPEG Al standardization activities
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JPEG Al Call-for-Proposals (CFP)

* To complete a learning-based image coding standard by 2024,
targeting human perception and effective performance for
image processing and computer vision tasks

Image Processed
processing  |— image
task

i i
: 5 E Standard

Input ; e Entropy » i »| Entropy ﬁ
Image—_} Transform ! uanhzalloni encoding L decoding @ﬁ dier;:gSgd

JPEG Al Learning-based Core Engine

Computer Class, object.
vision task semantic map,
etc.

Decoded image latents

@ “Final Call for Proposals for JPEG Al,” ISO/IEC JTC 1/SC29/WG1 N100095, Jan 2022




e
Status and Timeline

e Call-for-Proposals concluded in July 2022
e 10 responses evaluated objectively and subjectively
e MS-SSIM, IW-SSIM, VIF, NLPD, PSNR-HVS-M, VMAF, FSIM
e DSCQS method, 280+ subjects

e 4 parts to be included
e Part 1 — Core Coding System
e Part 2 — Profiling
e Part 3 — Reference Software
e Part 4 — Conformance

e 2 versions to be standardized
e v1 focuses on image reconstruction (Int’l Standard: Apr. 2024)

e v2 addresses compressed-domain vision/processing tasks and
better coding efficiency (Int’l Standard: Jan. 2026)
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Outline

e End-to-end Learned Image Compression
e VAE-based framework with hyperprior
e Parallel-friendly entropy coding
e Non-linear transform
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input image ]

|

[ reconstruction ]

VAE-based Compression with “Hyperprior”

Image latents

Main

Hyperprior

Encoder

Main
Decoder

Variational Autoencoder (VAE)

Encoder

Hyperprior
Decoder

Hyperprior Autoencoder

@ Balle et al., “Variational image compression with a scale hyperprior,” ICLR 2018.
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Main Encoder and Decoder

e Encoder works as an
analysis transform to
condense the image
information

]

Main
Encoder

input image

[

e Decoder - “inverse of
Encoder” - synthesizes
an approximation of the
original input

Main
Decoder

[ reconstruction ]
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Hyperprior Encoder and Decoder

e Hyper-encoder produces
hyperprior z = {z;} from Hyperprior

. y
image latents y = {y;} as @ e R
side information :

e Hyper-decoder decodes
guantized z to output
distribution parameters
of image latents y

Hyperprior
Decoder

Distribution parameters
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Distributions of Hyperprior z

e Assumptions
e p(z) is factorial
* p(z;) is identically distributed

e Cumulative Distribution Function (CDF) of z; is learned

Hyperprior
Neural
Encoder Zi™ Network | CPF(z)

Prob. of quantized hyperprior Z;:

Hyperprior ) p(2;) = CDF(2; +3) — CDF(2; — 3)
Decoder
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Conditional Distributions of Image Latents y

e Assumptions

e p(y|Z2) is fully factorial along channel and spatial dimensions
* p(y;|Z) is Gaussian with mean zero and scale derived from Z

)71'+1/2
Prob. of quantized latent V;: p(9;]2) = j N (yi; 0,0;(2))dy;
yi—1/2

[
I
[
I

\
l
!
l
. Hyperprior ili :
Decoder ofy: |
I S
|
/

|
|
| 9, =12 1 9 +1/2

—-_——— e e e e e .

Vi
@ J. Ballé et al., "Variational Image Compression with a Scale Hyperprior," ICLR 2018. /
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Quantization

e Rounding to the nearest integer at inference time, i.e.
uniform quantization with step size 1

e Differentiable approximation during training

e Additive uniform noise: to mimic quantization noise; e.g., End-
to-end optimized image compression,” ICLR2017

e Stochastic rounding: quantized value + noise; e.g., Lossy image
compression with compressive autoencoders, ICLR2017

e Soft quantization: continuous approximation to hard quantizer;
e.g., Soft-to-Hard Vector Quantization for End-to-End Learning
Compressible Representations, NIPS2017
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Training Objective

e A weighted sum of distortion L, and rate L

L= LD(X,J/C\) +A X LR (y,ZA)

e L — any differentiable metric, e.g. MSE, MS-SSIM,
perceptual loss, and adversarial loss

e L, — the rate needed to signal the image latents
— log p(¥|2) and hyperprior —log p(2)
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Context Model (1/2)

* p(y|2) is non-factorial along the spatial dimension

°* p(y;|Zz, V<;) is Gaussian with mean and scale derived from
hyperprior Z and previously coded image latents j_;

; Coded latents

\ Encoder /

B Context
Model

Hyperprior

(Reconstruction) (" Input Image )

predictions

@ Source: D. Minnen et al., “Joint Autoregressive and Hierarchical Priors for Learned

Image Compression,” NIPS18.
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Context Model (2/2)

e To condition the mean and scale predictions based on
hyperprior and previously coded latents y_;

Previously coded latents y;

‘dj\
BERER R / /
T % /
1|1 oo /
ololololo
olololo]lo

Source: A. van den Oord et al., “Conditional image generation with pixelcnn decoders,”

e NIPS16
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Rate-Distortion Comparison

~ (0]
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Source: D. Minnen et al., “Joint Autoregressive and Hierarchical Priors for Learned Image

@ Compression,” NIPS18.
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Issues of the Context Model

e NOT parallel-friendly for decoding

- Mean and variance prediction has to be done one-by-one
e Uni-directional context due to causality

— Samples can only be referenced from one direction

-

T 2

A7

Previously coded latents y;
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0 R5
A /\/4
0
0
0

0
0
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e Overview of Learned Image / Video Compression
e End-to-end Learned Image Compression

e VAE-based framework with hyperprior
e Parallel-friendly entropy coding

¢ Non-linear transform
¢ End-to-end Learned Video Compression
e Computer Vision Applications
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Checkerboard Context Model

e Split latents into two slices along the spatial dimension

e Slice 1 (anchor) uses hyperprior to derive coding probabilities

e Slice 2 (non-anchor) refers to Slice 1, hyperprior as context

|
El;EEiEEé R I B

hg (2) 1 :

|

E u

anchoy

—

Zergs yennch(,r text features

PASS 2 (non-anchor decoding)

PASS 1 (anchor decoding)

AD

O: hyperprior feature  [J: latent
O: zero O: useless value / placeholder

[O: entropy parameter  [[@: context feature

Source: D. He et al., “Checkerboard context model for efficient learned image compression,”

@ CVPR 2021
A,
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Remarks

e Mean and variance prediction in each slice is done in parallel
e Slice 1 (50% of samples) refers to hyperprior only

* Slice 2 (remaining 50%) refers to bi-directional context

e Decoding time is very close to using hyperprior only

e Rate saving decreases by 2-3% (w.r.t. the context model)
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Channel-wise Context Model

e Split latents into two slices along the channel dimension

e Slice 1 uses hyperprior to derive coding probabilities

e Slice 2 refers to Slice 1 and hyperprior as context

Slice 2 < Slice 1 <
f enc [*--..
Slice 1 (yl) f ¢
X ->{ }l - v
Y |: Slice 2 (y,) :
dec |
X «DF y———1% F@*/??
Code Slice 2 Code Slice 1

Hyperprior

I E———
"

Factorized
Entropy
Model

dec

Hyperprior

Source: D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for learned

a image compression,” ICIP 2020
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Spatial-channel Context Model

e Split latents into non-even slices along the channels
* Apply spatial-channel context in each slice
e Ex: Checkerboard-channel context

Channel dimension

A
— \
Slice 1 Slice 2 > Slice 3 (Checkerboard)
|
|

Source: D. He et al., “ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding,” CVPR 2022.
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e Overview of Learned Image / Video Compression
e End-to-end Learned Image Compression

e VAE-based framework with hyperprior
e Parallel-friendly entropy coding

e Non-linear transform
¢ End-to-end Learned Video Compression
e Computer Vision Applications
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Swin-Transformer as Non-linear Transform

e As compared to ConvNet, Swin-Transformer offers
e Flexible receptive fields
e Non-stationary, content-adaptive convolution
e Short- and long-range attentions with shifted windows

N
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@ Source: Y. Zhu et al., “Transformer-based Transform Coding,” ICLR 2022.
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Flow-based Coding Frameworks

e H. Ma et al., “End-to-End Optimized Versatile Image
Compression with Wavelet-Like Transform,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

e Y.-H. Ho et al., "ANFIC: Image Compression Using Augmented
Normalizing Flows," IEEE Open Journal of Circuits and Systems

(OJCAS), Dec. 2021.
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ANFIC in a Nutshell

To 29 ho

|
Autoencoding]

Transform Hyperprior

Autoencoding

Autoencoding [t

Transform 3

Quantization

€h

Learn image distribution p(x)

Employ a stack of additive
autoencoding transforms

Use augmented noise ¢, to

convert inp

Encode the
a bitstream

utxintox, = 0

latents Z,, h, into

[Ho et al. OJCAS 2021] /
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Additive Autqencoding Transform: Forward

Ty ~ Z2 ha

.'\ glee | |
: e Additive autoencoding
";‘E q transform + Hyperprior
‘--15-...._ g;z_nc
! 2
| T e Use augmented noise e, to
-°] Decoder ; .. convert input x into x, = 0
i dec | Autoel;ﬁc_:é:oding
| g‘)’i’] --.\L___
i I A“‘g"’d‘"g e Encode the latents 2,, i, into
VAE < = . | of hyper-prior 20182
1 t i Encoder : 3 a bitstream
—~—__| Jenc Quantization
| 97,
I €2 €h

[Ho et al. OJCAS 2021] /

@ Input Image Initial Latent
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Additive Autoencoding Transform: Inverse

Autoencoding

Autoencoding
of hyper-prior

9]

Quantization

€h

e Addition = Subtraction

e Subtraction = Addition

[Ho et al. OJCAS 2021]
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Rate-Distortion Performance

Kodak dataset
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Outline

e End-to-end Learned Video Compression
e Residual-based video compression
e Conditional video compression
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Residual-based Coding Framework

Xt
Current
Frame

Motion Comp.
Network

Flow Coding
Network

Flow Estimation
Network

@ Source: Lu et al., “DVC: An end-to-end deep video compression framework,” CVPR 2019
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Notable Works

* DVC/DVC-Pro: Lu et al., “DVC: An End-to-End Deep Video
Compression Framework,” CVPR 2019; Lu et al., “An End-

to-End Learning Framework for Video Compression,”
TPAMI 2020

» Scale-space: Agustsson et al., “Scale-space Flow for End-
to-End Optimized Video Compression,” CVPR 2020

e FVC: Z. Hu et al., “FVC: A New Framework towards Deep
Video Compression in Feature Space,” CVPR 2021

* C2F-FVC: Z. Hu et al., “Coarse-to-fine Deep Video Coding
with Hyperprior-guided Mode Prediction,” CVPR 2022
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Outline

e Overview of Learned Image / Video Compression
¢ End-to-end Learned Image Compression

e End-to-end Learned Video Compression
¢ Residual-based video compression
e Conditional video compression

e Computer Vision Applications
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Residual vs.

Conditional Coding

Residual coding Conditional Coding

| ! I

™~

|z |@e .
Motion | Tt-1 Motion = Tt-1
Compensation Compensation
£ [ft
Motion Inter-frame Coder Motion
Coder Coder
Motion Coder = =]
Tt Tft J Frame Buffer Ty I'ft

It Motion  Z¢_1
Estimation

Input Frame

(-

Tt Motion | Tt-1
Estimation

Input Frame
No evaluation of residual signals!
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Conditional Coding

e Residual coding is sub-optimal from the information-
theoretic perspective

H(It - Ic) = H(It - Icllc)zH(Itllc)

I;: Coding frame
I.: Motion-compensated reference frame

e Conditional coding aims to approach H(I;|I.)
—> Need to learn the conditional distribution p(I;|1,)

@ [Ladune et al. MMSP’20] [Li et al. NIPS'21]
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Conditional vs. Residual Coding in 2022

UVG Dataset
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Notable Works

e DCVC:J. Li et al., “Deep Contextual Video Compression,”
NeurlPS 2021

e DCVC-TCM: X. Sheng et al., “Temporal Context Mining for
Learned Video Compression,” IEEE TMM, 2022

e DCVC-HEM: J. Li et al., “Hybrid Spatial-Temporal Entropy
Modelling for Neural Video Compression,” ACM MM 2022

e DCVC-DC: J. Li et al., “Neural Video Compression with Diverse
Contexts,” CVPR 2023

e CANF-VC: Y.-H Ho et al., “CANF-VC: Conditional Augmented
Normalizing Flows for Video Compression,” ECCV 2022

e VCT: F. Mentzer et al., “VCT: A Video Compression Transformer,”
NeurlPS 2022

e MIMT: J. Xiang et al., “MIMT: Masked Image Modeling
Transformer for Video Compression,” ICLR, 2023
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DCVC: Deep Contextual Video Coding

e J. Li, B. Li, Y. Lu (MSRA), NeurlPS 2021

e Use a conditional variational autoencoder (CVAE) for
contextual encoding and decoding

Encoding

Input frame x, Contextual encoder Contextual decoder Decoded frame £,
Bitstream

Decoding

refinement
L iy

‘J.‘
F it
_ Mation , J wa %e-1 Feature
estimation Em: Dec LA extractor |

Decoded frame %,_,

@ Source: J. Li et al., “Deep Contextual Video Compression,” NIPS 2021
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e
Conditional Variational Autoencoder

* Use singal concatnation as a means to achieve
contextual encoding and decoding

Contextual encoder

Input frame x, j Contextual Encoder

Decoded frame %, Contextual Decoder

Contextual decoder

@ Source: J. Li et al., “Deep Contextual Video Compression,” NIPS 2021
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DCVC-TCM: Temporal Context Mining

e Extend DCVC by learning multi-scale conditioning
factors from previously stored frame features

Contextual Encoder

x
Input frame Contextual Encoder

Decoded frame x Contextual Decoder

Frame Generator Contextual Decoder

@ Source: X. Sheng et al., “Temporal Context Mining for Learned Video Compression,” IEEE TMM, 2022/
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DCVC-HEM

e An extended version of DCVC-TCM

e Spatial-channel context model for entropy coding

e Multi-granularity quantization for variable-rate coding

Global Channel-wise Element-wise
(Adjustable) (Learned) (Learned)

2ol Multi-Granularity Quant
}’r—_’@ {;L:} =@ » Round
f B
| 5
AE
(114
gsgtebal qs" &f asi* L0 E'%ﬂ
111 ’
‘ AD
A A rl\ y
Ve * '..?_(j" '\?_<J Q(.z"
e Multi-Granularity Inverse Quant

@ Source: J. Li et al., “Hybrid Spatial-Temporal Entropy Modelling for Neural Video Compression,” ACM

MM 2022 %
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CANF-VC: Conditional Augmented

Normalizing Flows for Video Compression

e Y. H. Ho (NYCU), C. P. Chang (NYCU), P. Y. Chen (NYCU),
A. Gnutti (Univ. Brescia), W. H. Peng (NYCU), ECCV 2022

e Adopt conditional augmented normalizing flows
(CANF) for conditional coding

e Apply conditional coding to both motion and inter-
frame coding

o
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(-,

Conditional ANF (CANF)

e Turn ANFIC into a conditional video generator

Idea: To generate I; conditionally based on [;_4




/Conditional Video Frame Generation

Hyperprior

Autoencoding

Autoencoding
of hyper-prior

9]

Quantization

€h

Dec_2(25)

Dec_1(z1)
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%

Motion
Compensation

CANF for Motion and Inter-frame Coding

Input Frame

4

R ——

Inter-frame Coder

Motion Coder

R
. 1 Frame Buffer
o ¥

!
.+ Motion Buffer

o R
f ¢ Motion
Extrapolation
F1r =

[

Motion
Estimation

Ii 4

Ii 1,14 9,143
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Per-frame Runtime on CPU

30

25

20

15

10

0

® Encode
Decode

Learned Video Codecs vs. X265

Learned codec - Encoding : Decoding ~1.6: 1
X265 (HEVC) - Encoding : Decoding ~17.8 : 1
Decoding time - Learned : X265 ~37.3: 1
Encoding time - Learned : X265 ~3.3: 1

Encoding
25.78
DVC
Decoding
X265 16.42
Encoding
7.81
Decoding
0.44
X265 Learned (DVC)
7.81 25.78
0.44 16.42
CPU: i7-9700K m Encode mDecode

RAM: 16G
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* Encoding : Decoding=1.5:1

UVG dataset, GOP=12

Multiply-Accumulate Operations (MAC)

e BD-rate saving (vs. HM-16.20): The higher the better
* kMAC/pixel for encoding: The lower the better
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40 1

20 4

_EG |

BD-rate saving (%)

_4E| -

—60 -

Li et al. (ACM MM'22)

DVC_Prd (TPAMI'20)

CANF-VC
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R i By e e

RTX 3080: 4AK@30Hz ~ 128kMAC/pixel

DVC (CVPR'19)
»
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\
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BD-rate saving (%)
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_EG i

_4[] -
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Peak Memory Requirements

e BD-rate saving (vs. HM-16.20): The higher the better
e Peak memory: The lower the better

UVG dataset, GOP=12

CANF-VC (ECCV'22) TCM (arxiv'21)
A
¥ CANF-VC Lite
) (=01 01'4 77 B A R A
DCVC (NIPS'21)
e
_DVC_Pro (TPAMI'20) M-LVC (CVPR20)
DVC (CVPR'19)
=
60 75 90 105 120 135

Peak Memory (full-resolution feature maps)
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60

BD-rate saving (%)

Model Size

e BD-rate saving (vs. HM-16.20): The higher the better
* Model size (I-frame NOT counted): The lower the better

UVG dataset, GOP=12

40 1

20 1

e ——————————— . ————— T — ——, ————— —— . . —— .

Li et al. (ACM MM'22)
13
TCM (arxiv'21) CANF-VC {ECCV'22}
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DCVC (NIP5'21)
a FVC (CVPR'21)
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Outline

e Overview of Learned Image / Video Compression
¢ End-to-end Learned Image Compression

¢ End-to-end Learned Video Compression

e Computer Vision Applications
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Notable Works

e Single-task bitstram

e J. Liu et al., “Improving Multiple Machine Vision Tasks in the
Compressed Domain,” ICPR 2022

e Scalable bitstream

e H Choi et al., "Scalable Image Coding for Humans and
Machines,” TIP 2022

e Multi-task (or many-task) bitstream

e R. Feng et al., “Image Coding for Machines with Omnipotent
Feature Learning,” ECCV2022

(-
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Improving Multiple Machine Vision Tasks in

the Compressed Domain

* Train a base codec with multi-task loss (e.g. recon. + seg.)

* Encoder adopts a gate module for task-specific feature coding

e Decoder uses a transform module to adapt features to the task
- Encoder = Image Compressor + Feature Extractor

!
. Decompressed '
Encoder x---------~ Bitstream ----------- »Decoder ---------- > P »
\ Images A
K' gate - Bitstream > Transform Semantic

Module Segmentation

Tgm L oo

\_) . Transform Object
> —
gate - Bitstream Module Detection n

k_) gate - Bitstream > Transform Foreground

Module Extraction

L L By

@ Source: J. Liu et al., “Improving Multiple Machine Vision Tasks in the Compressed Domain," ICPR 2022 /
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Scalable Image Coding for Humans and Machines

* Divide image latents y along channel dimension into y; and y,
® Decode y, (base layer) for machine perception

e Decode y; + y, (enhancement layer) for human perception

Human Vision
Enhancement Decoder

243

-

Analysis
Encoder
Y| |
Hyper
Analysis
Hyper
Synthesis

Dast Dlisticalll ::-'~;. ; :
m, ‘:-
B NN
Encoder Side Bitstream Base Decoder Machine Vision

Transform module

Concatenate
Synthesis
Decoder

Latent Space
Transform

@ Source: H Choi et al., ”Scalable Image Coding for Humans and Machines,” TIP 2022
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Image Coding for Machines with Omnipotent

Feature Learning

e Use contrastive learning to learn omnipotent features, i.e.
features suitable for many vision tasks

* Encode omnipotent features with learned codecs

* Fine-tune recognition networks with omnipotent features

For

}_ ¥ Backb contrastive loss
At ackbone Backbone
4 I 1 Tail i

T x f q/k
(a)

Tl Lbdogn

#T Codec hﬁ? ”“””']] T3 ﬂ
f f f T, ﬂ

(b) (c) -

@ Source: R. Feng et al., “Image Coding for Machines with Omnipotent Feature Learning,” ECCV 2022
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i |
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Tail T

| ]
. T
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\
\

Feature
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I
!
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Tail T

Learned feature compressor

Projection - -

Information Filtering (IF) + Contrastive learning

1
1
| Va

L J
Loss_contrastive

+
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@ Source: R. Feng et al., “Image Coding for Machines with Omnipotent Feature Learning,” ECCV 2022
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Transfer Learning for Machine Perception

e Task: To transfer a learned codec from human perception to
machine perception

e Adapt the feature distributions of the learned codec using
task-specific conditions for machine perception

Task 1 condition

Classification

Single-task or multi-task bitstreams

Segmentation

Decoder'«
\

Encoder
Decoder

»

a Task 2 condition




Machine Task: Classification

Base codec Adapted base codec Full finetuning
(Machine) (Machine)

Decoded Image
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Rate-Accuracy Performance

Classification Object Detection
=, O Fullfinetning Lo
ull Tinetuning S Y R L iy i —
// e //
. 70 / 38 /’ //
9 Adapted —~ < -
© / P / Adapted -
3 65 - - o - ~
< S E 36 /
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= Vad 34 /
VA Uncompressed / Uncompressed
55+ /‘ --- Full fine-tuning / -—-- Full fine-tuning
— — Base codec / — — Base codec
// —— Adapted base codec 32 / —— Adapted base codec
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Conclusion

e End-to-end learned image/video compression is
progressing at light speed
e For image coding,

e VAE-based compression with hyperprior is currently the
most popular approach

e JPEG Al is progressing fast towards version 1
e PSNR-RGB: > VVC intra, MS-SSIM: >> VVC

e For video coding,

e Research is still ongoing, with conditional coding emerging
as an attractive alternative to residual coding

e More content-adaptive coding is expected
e PSNR-RGB: > VVC (LDP), MS-SSIM: >> VVC

@
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Conclusion

 The complexity of learned codecs is still high

e 2 to 3 orders of magnitude higher than traditional
codecs in terms of kMAC/pixel and CPU decoding time

* Many issues remain widely open
e Performance and complexity assessment
e YUV content coding
e Encoder optimization
e Rate control
e Generalization
e Coding for machines
* etc.
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Neural Image Compression on FPGA

* H. Sun et al, “F-LIC: FPGA-based Learned Image
Compression with a Fine-grained Pipeline,” ASSCC 2022




Thank you for your attention
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