The Emerging Ecosystem of Open-Source IC Design

Boris Murmann Chair, IEEE SSCS TC-OSE May 23, 2023

The Washington Post

TECHNOLOGY

Economic future of U.S. depends on making engineering cool

Purdue University races to expand semiconductor education to fill yawning workforce gap that threatens reshoring effort

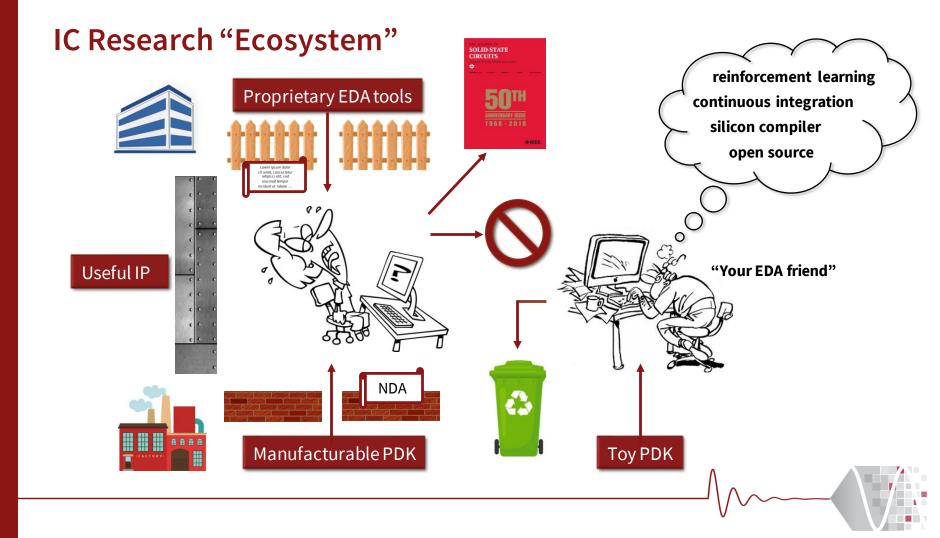
By <u>Jeanne Whalen</u> October 23, 2022 at 7:00 a.m. EDT The **A**Register

٦ Ξ

{* SYSTEMS *}

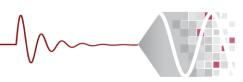
America's chip land has another potential shortage: Electronics engineers

Why screw around writing Verilog when you can earn tons more with Python, Java or Go?



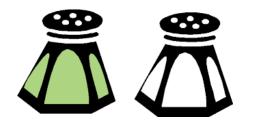
Today's Competition for Talent

- Tech-savvy students at HW/SW intersection thrive on collaborative/maker culture
- Infrastructure enabled by integrated circuits!


Big-Bang Events: Open-Source PDKs

- First open-source PDK (November 2020)
 - > SkyWater 130nm CMOS
 - <u>https://github.com/google/skywater-pdk</u>
- Second open-source PDK (October 2022)
 - GlobalFoundries 180nm MCU
 - <u>https://github.com/google/gf180mcu-pdk</u>
- Third open-source PDK (March 2023)
 - > IHP 130nm BiCMOS
 - <u>https://github.com/IHP-GmbH/IHP-Open-PDK</u>
- Permissive Apache 2.0 licensing

Tim (mithro) Ansell (They/Them) · 1st Software Engineer at Google

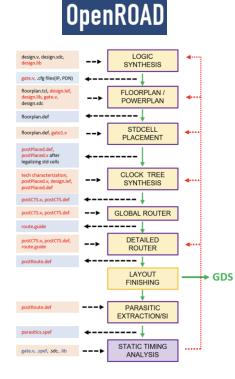


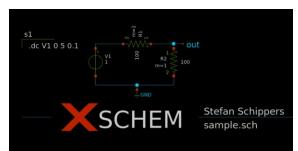
Open Source in a Nutshell

- Core principles
 - > Open exchange, collaboration, transparency, meritocracy
- Typical benefits (as seen in the software community)
 - > Improves productivity, managing complexity
 - > Enables community review and steady improvements, re-use
 - Promotes education and tinkering
- Open source does not imply "free"
 - Can make money with open-source products (Red Hat, Ruby on Rails, ...)
 - Proper terminology
 - Proprietary vs. open source (NOT: commercial vs. open source)

Open Source is in Our DNA!

SPICE (Simulation Program with Integrated Circuit Emphasis)


Laurence W. Nagel and D.O. Pederson


EECS Department University of California, Berkeley Technical Report No. UCB/ERL M382 April 1973

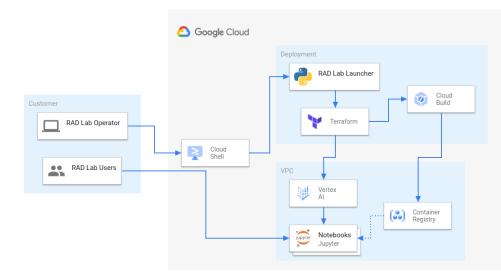
Sources: http://www.omega-enterprises.net, http://opencircuitdesign.com/magic

Examples of Today's Open-Source EDA Tools

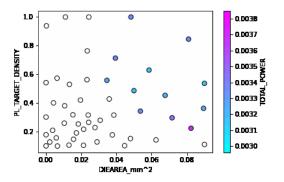
COLUMN TWO IS NOT

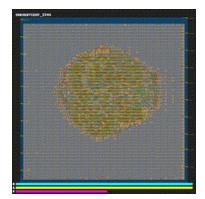
to the second second

Sandia National Laboratories	Хусе	
Parallel elect	ronic si	mulation

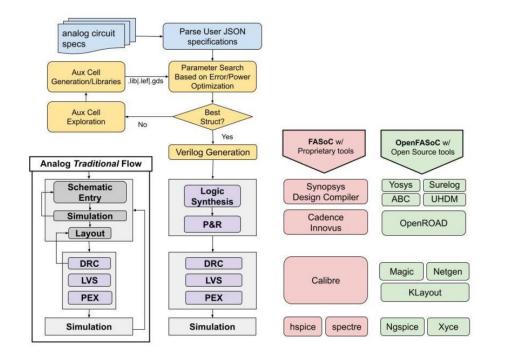


GDS_FACTURY




8

Research: Design Space Exploration in the Cloud



https://bit.ly/jupyter-silicon

Research: New AMS Design Methodologies

Mehdi Saligane et al.

https://github.com/idea-fasoc/OpenFASOC

Industry: Start-Up Companies

ChipFlor

chiplgnite for Startups

Accelerated Design Reference designs and automated design flows enable rapid development.

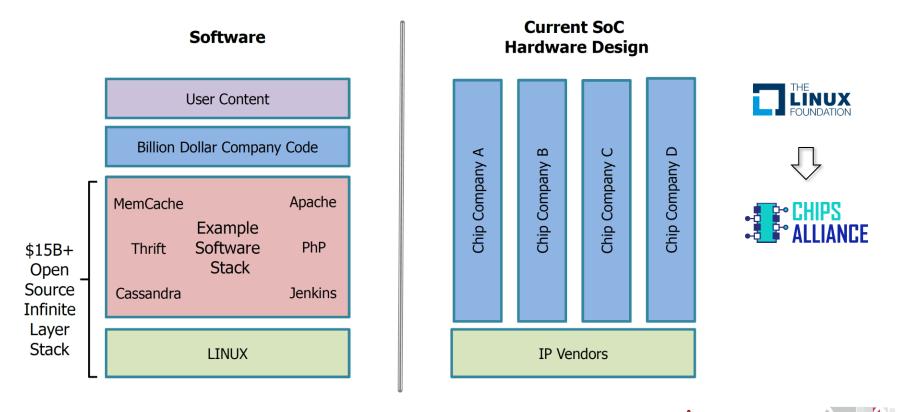
You Don't Need to Be an Expert Guided and automated flows make design easy for those without IC design experience.

Helping product companies to make their own chips

Open source is changing the rules of the game

zer|o|

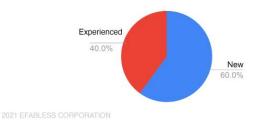
SiliconCompiler

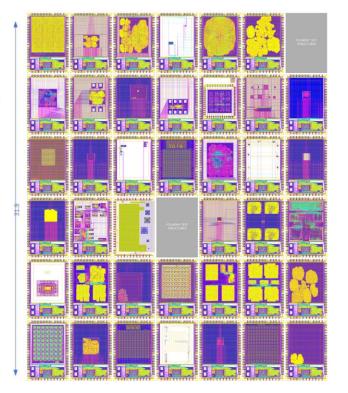

SiliconCompiler @siliconcompiler · Dec 4 I am alive! siliconcompiler.com

SiliconCompiler is an open-source compiler framework that aims to automate translation from source code to silicon.

The SiliconCompiler project includes a standardized compiler data Schema, a Python object-orientedAPI, and a distributed systems execution model. **The project philosophy is to "make the complex possible while keeping the simple simple".**

Industry: Let's Break the Silos! (Will Take Time...)

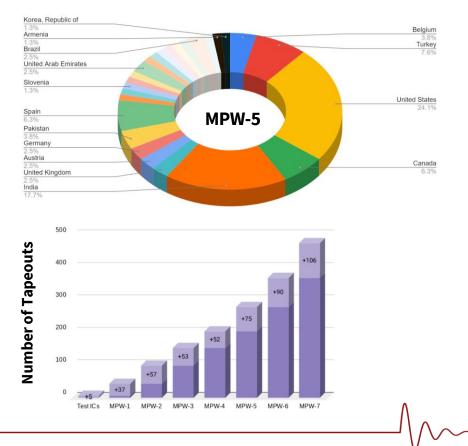

Google-Sponsored (Free) Shuttle Runs **efabless**


GOOGLE's MPW-ONE

First MPW Overbooked 45/40

45 designs submitted in 30 days!

60% by first time designers!



Open-Source IC Design is Taking Off!

Efabless Caravel "Harness" SoC

2023 ISCAS 6) Monday AM Session

11:30 – 13:00 **Review of the First Silicon Results in the Open Source Ecosystem** Room: San Carlos III (Marriott) Session Chair(s): Mehdi Saligane, *University of Michigan* Priyanka Raina, *Stanford University*

11:30

2273: An Open Source Compatible Framework to Fully Autonomous Digital LDO Generation Yaswanth Kumar Cherivirala, Mehdi Saligane, David Wentzloff University of Michigan, Ann Arbor, United States

11:48

2290: Design of Cryo-CMOS Analog Circuits Using the Gm/ID Approach Christian Enz, Hung-Chi Han École Polytechnique Fédérale de Lausanne, Switzerland

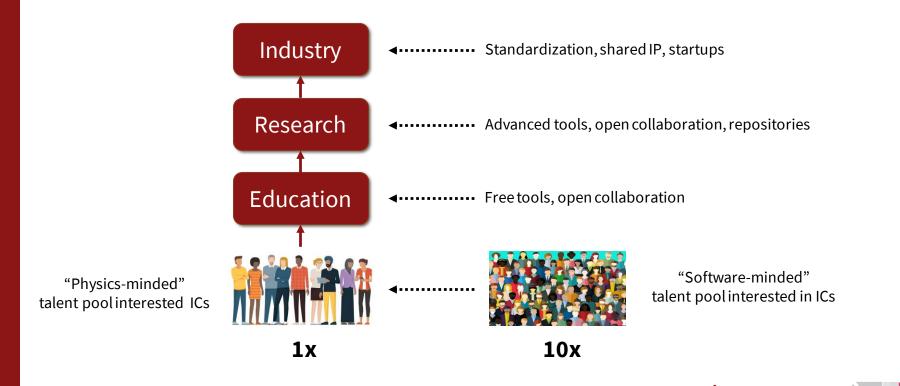
12:06

2314: SRAM Design with OpenRAM in SkyWater 130nm

Jesse Cirimelli-Low{2}, Muhammed Hadir Khan{2}, Samuel Crow{2}, Amogh Lonkar{2}, Bugra Onal{2}, Andrew Zonenberg{1}, Matthew Guthaus{2} {1}IO Active, United States; {2}University of California, Santa Cruz, United States

11:24

2326: An Open-Source 4x8 Coarse-Grained Reconfigurable Array Using SkyWater 130 nm Technology and Agile Hardware Design Flow Po-Han Chen, Charles Tsao, Priyanka Raina Stanford University, United States


12:42


2327: Open-Source, End-to-End Auditable Tapeout of Hardware Cryptography Module

Anish Singhani

Carnegie Mellon University, United States

Ecosystem Stakeholders

Home / Membership / Awards / ISSCC "Code-a-Chip" Travel Grant Awards

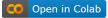
ISSCC "Code-a-Chip" Travel Grant Awards

ISSCC "Code-a-Chip" Travel Grant Awards

SUBMISSION DEADLINE: NOVEMBER 21, 2022

The ISSCC 2023 Code-a-Chip Travel Grant Award was created to (1) promote reproducible chip design using open-source tools and notebook-driven design flows and (2) enable up-and-coming talents as well as seasoned open source enthusiasts to travel to the Conference and interact with the leading-edge chip design community. This program is made possible by a donation from the CHIPS Alliance, a non-profit organization hosted by The Linux Foundation.

Program rules

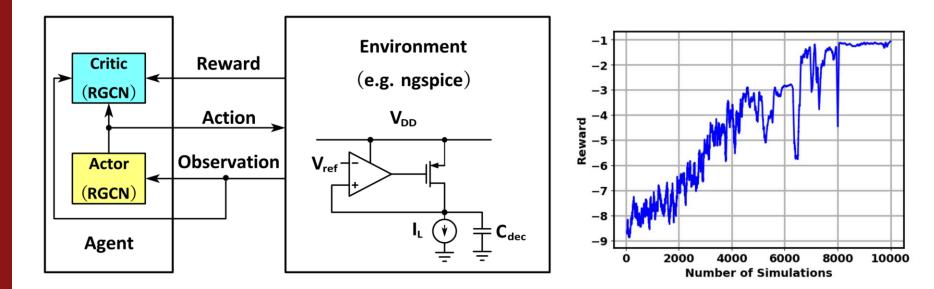

- The program is open to anyone (no restrictions). Membership in the IEEE Solid-State Circuits Society (SSCS) membership is encouraged, but not required. Teaming is encouraged, but each team must identify a single leader who can travel to the ISSCC from February 19-23, 2023, to receive the award.
- Applicants must submit an open-source Jupyter notebook detailing an innovative circuit design using open-source tools (examples: inverter, temperature sensor)
- Each submission must contain a suitable open source license (e.g., Apache 2.0).

https://sscs.ieee.org/membership/awards/ieee-sscs-code-a-chip-travel-grant-awards

Made possible by a donation from the CHIPS Alliance

• CHIPS • ALLIANCE

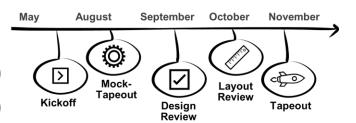
Example: Winner of VLSI 2023 Code-a-Chip Contest

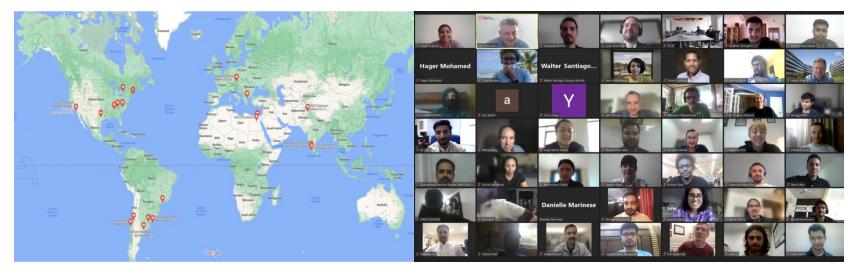

Design and Optimization of Analog LDO with Relational Graph Neural Network and Reinforcement Learning

Zonghao Li Team, March 2023 SPDX-License-Identifier: Apache-2.0

Name	Affiliation	IEEE Member	SSCS Member
Zonghao Li (Lead) Email ID: zonghao.li@isl.utoronto.ca	University of Toronto	Yes	Yes
Anthony Chan Carusone (Advisor) Email ID: tony.chan.carusone@isl.utoronto.ca	University of Toronto	Yes	Yes

https://github.com/sscs-ose/sscs-ose-code-a-chip.github.io/blob/main/VLSI23/accepted_notebooks/ldo_rgcn_rl/ldo_rgcn_rl.ipynb

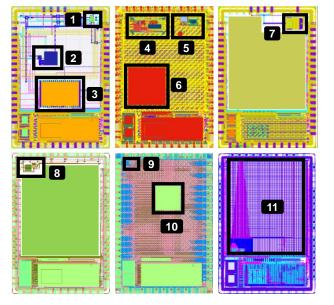

Example: Winner of VLSI 2023 Code-a-Chip Contest



https://github.com/sscs-ose/sscs-ose-code-a-chip.github.io/blob/main/VLSI23/accepted_notebooks/ldo_rgcn_rl/ldo_rgcn_rl.ipynb

SSCS PICO Chipathon

- 2021: 61 submissions, 18 selected (11 taped out)
- 2022: 54 submissions, 22 selected (14 taped out)



2022 selected teams from 10 countries, 5 continents

June 22, 2022, kick-off meetup with over 100 attendees

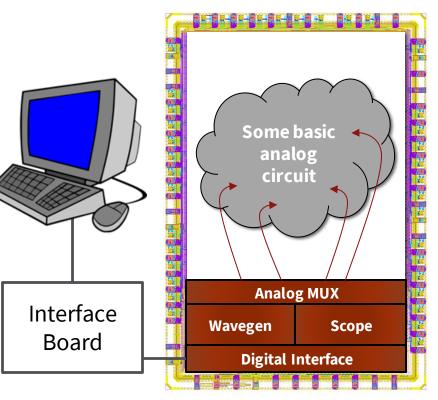
2021 Chipathon

	Function	Team	Chip URL	
1	5G bidirectional amplifier	Pakistan3 (FAST National University)		
2	Wireless power transfer unit	Pakistan2 (FAST National University)	https://efabless.com/projects/560	
3	Variable precision fused multiply-add unit	Pakistan1 (FAST National University)		
4	Oscillator-based LVDT readout	India2 (Anna University)		
5	Temperature sensor	India1 (Anna University)	https://efabless.com/projects/474	
6	GPS baseband engine	India3 (Anna University)		
7	Ultra-low-power analog front-end for bio signals	Brazil2 (U. Federal de Santa Catarina)	https://efabless.com/projects/476	
8	TIA for quantum photonics interface	USA4 (University of Virginia)	https://efabless.com/projects/470	
9	Bandgap reference	Egypt (Cairo University)	https://ofeblace.com/projects/472	
10	Neural network for sleep apnea detection	USA2 (University of Missouri)	https://efabless.com/projects/473	
11	SONAR processing unit	Chile (University of the Bio-Bio)	https://efabless.com/projects/540	

- Paid runs via Efabless chipIgnite (130 nm SkyWater)
- All designs are open source

Magazine article: "SSCS PICO Contestants Cross the Finish Line," https://ieeexplore.ieee.org/document/9694491

2022 Chipathon			
DARC DOPC DARC DOPC	Service Se		
	12 TEST STRUCTURES		14


	Function	Team	Chip URL	
1	Spatial Sigma-Delta ADC	Pakistan1 (FAST National University)		
2	On-Chip DCDC Converter with Fast Transient Response	Pakistan4 (FAST National University)	<u>https://platform.efables</u> s .com/projects/1486	
3	Matrix Multiplier for AI at the Edge	Pakistan7 (FAST National University)		
4	Encrypted LSB Steganography with AES Accelerator	Pakistan2 (FAST National University)		
5	CMOS Bandgap Reference	Pakistan3 (FAST National University)	<u>https://platform.efabless</u> .com/projects/1443	
6	Self-Interference Cancellation LNA	Pakistan4 (FAST National University)		
7	Sub-Sampling PLL for SerDes Applications	Austria (Johannes Kepler Univ., Linz)		
8	60 GHz Demonstrator Chip	Brazil (University of São Paulo)	https://platform.efabless .com/projects/1431	
9	Low-Power 10-bit SAR ADC	USA1 (University of Alabama & MIT Lincoln Lab)		
10	Boost Converter for Battery-Powered IoT Applications	Greece (Aristotle University of Thessaloniki)	<u>https://platform.efabless</u> . <u>.com/projects/1457</u>	
11	Radiation-Hardened ALU	USA2 (North Carolina A&T State University)	https://platform.efabless .com/projects/1593	
12	DC-DC Buck Converter for CubeSat	Chile¹/Argentina²/Uruguay³ ¹Universidad Técnica Fed. Santa María ²Universidad Nacional del Sur& Instituto Nacional de Tecnología Industrial ³Universidad Católica	<u>https://platform.efabless</u> .com/projects/1427	
13	Electrochemical Water Quality Monitoring	USA5 (University of Tennessee)	<u>https://platform.efabless</u> .com/projects/1469	
14	Mix-Pix - A Mixed-Signal Circuit for Smart Imaging	Chile (Universidad del Bío-Bío)	https://platform.efabless .com/projects/1494	

 $\frac{1}{2}$

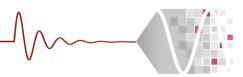
Magazine article: "Meet the SSCS PICO Chipathletes," https://ieeexplore.ieee.org/document/9950763

2023 Chipathon (Ongoing)


- Build on-chip waveform generator and "oscilloscope" macros
 - Collection of generally useful IP blocks
- Enable testing of low frequency analog circuits using only a PC
- Tape out first prototypes and improve with community over time

Looking for More Volunteers!

- Possibletasks
 - > Evaluate submissions and milestone reports
 - Attend weekly online meet-ups (~June-November)
 - > Give a short "how to" presentation during online meetup
 - Provide technical guidance during meet-ups and via Chipathon Slack channel
 - > Prepare online tutorials, webinars, chapter talks
 - > Help with open-source tool & utility development
- Minimum time commitment of 1-2 hours per week
- Sign up at <u>https://sscs.ieee.org/volunteer-opportunities#SSCD</u>
 - › Or send an email to <u>bmurmann@ieee.org</u>


Summary

There is enormous excitement about collaborative, open-source IC design

- > It will likely change the way we teach & work
- > Fast growing community of ~5000 enthusiasts
- SSCS & CAS Program for Integrated Circuit Outreach (PICO)
 - > Engage with broader open-source community and contribute
 - > Code-a-chip travel grants, Chipathon, ...
 - Volunteering & mentoring opportunities
- Let's all work together to add a new fun factor to IC design!

