ower Quality Considerations in Distribution Engineering

Alan Hannah

IEEE Rural Electric Power Conference

Milwaukee, Wisconsin April 17, 2012

Power Quality Maze

Solutions

Standards

Power Quality Standards

- > RUS Bulletin 61-2 & Other
- > IEEE Standards (519 & C84.1)
- > CRN Publications
- **≻**Other Standards

RUS Bulletin 61-2

- >40 Ω Ground Rule
- Later USDA Bulletins allowed 30 Ω for Substation Transformers Over 5 MVA

ANSI C57 Transformer Categories

			Permitted Minimum	
	Single Phase	Three Phase	Ground	
Category	(kVA)	(kVA)	Impedance	
Ι	5 to 500	15 to 500	40Ω	
II	501 to 1667	501 to 5000	40Ω	
III	1668 to 10,000	5001 to 30,000	30Ω	
IV	Above 10,000	Above 30,000	30Ω	

Typical Single Phase Distr. Loading

Power Xfmr Distr. Breaker

ANSI Standard for Volt Imbalance

- %Volt Imbalance =100x(Max –Ave)/Average
- Unloaded Service
- > Example:Ph Voltages ;485;476;&477
- **>**485-479/479 100=1.25 %

Measures to Improve Power Quality

Distribution							
Distribution Design	Operations	Service Continuity	Power Quality				
Larger Feeder			Decreased voltage				
Conductor			drop				
	Moving single phase	Improved due to	Improved service				
	to loads to balance	lower neutral	voltage balance				
	feeder loading	currents					
Larger Feeder			Decreased voltage				
Neutrals			drop				
Consider use of single			Improved reliability				
phase reclosers on			on feeder. Decreased				
three phase feeders			reliability for one phase of distribution				
			feeder				
			iccuci				
Use of single phase			Improved voltage				
regulators on			balance to three				
distribution circuit			phase customers				
			-				
Raising minimum		Increased due to	Possible increase in				
ground trip level on		lower incidence of	voltage imbalance				
feeder		ground trips					
Install shunt		Could decrease	lower I ² R line losses				
capacitors on feeder &		due to blown fuses					
3 phase taps							

Increasing Neutral Pickup Settings

- Reduces Possibility of Tripping for Imbalance
- Raises Possibility of Excessive Voltage Imbalance
- Derate 3 Phase Motors

Increasing Volt Imbalance

Electric supply systems should be designed and operated to limit the maximum voltage unbalance to 3 percent when measured at the electric-utility revenue meter under no load conditions.

Consequences-Motors Overheat –Derated Below 88%

Three Phase Motor Derating

Utilization Voltages (120-600V)

- ➤ Nominal -120V
- > 120-600V Service-114-126
- > Systems > 600V-117-126
- Service Utilization Voltages(Range A)-110-125

Service and Utilization Voltages (Systems > 600 Volts)

- ➤ Nominal -120V
- > 120-600V Systems -110-127
- > Systems > 600V-114-127
- Service Utilization Voltages(Range A)-106-126

Service and Utilization Voltages (Delivery Volt > 600 Volts)

- ➤ Nominal -120V
- > Service Utilization Voltages 120-600V Systems-108-126
- Service Utilization Voltages for Systems >600V-104-127

Voltage Distortion ANSI 519-1992

Bus Voltage at	Individual Voltage Distortion	Total Voltage Distortion
PCC	(%)	THD (%)
69 kV and	3.0	5.0
below		
69001 V through	1.5	2.5
161 kV		
161001 kV and	1.0	1.5
above		

Current Distortion Limits for General Distribution Systems (120 V through 16900 V

	Maximum Harmonic Current Distortion in Percent of I _L Individual Harmonic Order (Odd Harmonics)									
$\overline{I_{SC}/I_L}$	<11	11≤h<17	17≤h<23	23≤h<35	35≤h	TDD				
<20	4.0	2.0	1.5	0.6	0.3	5.0				
20<50	7.0	3.5	2.5	1.0	0.5	8.0				
50<100	10.0	4.5	4.0	1.5	0.7	12.0				
100<1000	12.0	5.5	5.0	2.0	1.0	15.0				
>1000	15.0	7.0	6.0	2.5	1.4	20.0				

Design Voltage Flicker Chart

ANSI 1453-2011 Measuring Flicker

➤ Plt: is calculated as the cubic average of 12 consecutive Pst values obtained for a 2 hour period.

$$Plt = \sqrt[3]{1}/12 \sum_{1}^{12} Pst$$

Recommended planning levels for medium voltage distribution systems are 0.9 for Pst and 0.7 for Plt.

Ways to Mitigate Flicker

- ➤ Soft Start

 Wye-Delta starters

 Autotransformers

 Static Electronic Soft Start Systems
- Steady State and Starting
 Liquid Rheostats
 Static VAR Compensators
 DC Motor Systems

Shunt Capacitors & Flicker

Fig (a) E_L =91% E_S . Fig(b) E_L =111% E_S With Switch Closed

Conclusions

Action

- Improving One Power Quality Parameter
- Raising Minimum Trip Values

Effect

- Can Create a Negative Impact on Another
- Create Greater Voltage Imbalance

Conclusions

➤ Power Quality Can Be Made Easier
When Armed With The Right Standards

Questions

