

Solar Photovoltaic Modeling Impacts on Distribution Systems – Case Study

2012 IEEE Rural Electric Power Conference Milwaukee, WI April 16, 2012

Greg Shirek & Brian Lassiter Milsoft Utility Solutions Abilene, TX

OUTLINE

- DG Impact Study References/Guides
- PV Plant Modeling
 - PV Arrays
 - Tilt, angle and ratings
 - Insolation Curves
 - Inverters and Operating Modes
- Line Voltage Regulator Operating Modes

Loads

- Local Feeder Load Review
- Coincidence with Solar Plant generation profiles
- Case Study with 2 MW PV Plant
 - Voltage Issues with Step Voltage Regulators
 - Inverter Operating Mode Effects

1547 Interconnection Series

SCC21 Standards Coordinating Committee on Fuel Cells, PV, DG, and Energy Storage

1547 Interconnection Series Standard for Interconnecting Distributed Resources with Electric Power 1547 (2008) Systems 2005 Standard for Conformance Tests Procedures for Equipment 1547-1 (2005) Interconnecting Distributed Resources with Electric Power Systems Application Guide for IEEE 1547 Standard for Interconnecting Distributed 1547-2 (2008) **Resources with Electric Power Systems** Guide For Monitoring, Information Exchange, and Control of Distributed 1547-3 (2007) **Resources Interconnected with Electric Power Systems** Guide for Design, Operation, and Integration of Distributed Resource Island 1547-4 (2011) Systems with Electric Power Systems Draft Recommended Practice For Interconnecting Distributed Resources 1547-6 (2011) With Electric Power Systems Distribution Secondary Networks Draft Guide to Conducting Distribution Impact Studies for Distributed 1547-7 (Draft) **Resource Interconnection** Recommended Practice for Establishing Methods and Procedures that **1547-8 (Draft)** Provide Supplemental Support for Implementation Strategies for Expanded Use of IEEE Standard 1547

Solar PV Plant Components

- Panels DC Ratings in Watts
- Panels create collectors
- Collectors mounted on tracking system
- Inverters
- Interconnect Step-Up Transformer

Inverter Operating Modes

- Fixed Power Factor (Unity, Q=0)
- Fixed Power Factor (Q≠0)
 - Maintain a Fixed PF at the POI, e.g. maintain between 0.98 lag and unity

Voltage Droop

- Increase/Decrease Q linearly based on Voltage at POI within limits.
 Inverters rating based on voltage, so voltage decrease means can increase Q, and vice versa.
- Voltage Control
 - Regulate a set point voltage at the POI by allowing inductive or capacitive Q within the limits of the inverter

Traditional deployment is to size inverters for PV Array de-rated AC kW due to IEEE 1547 standard, and operate in Unity PF mode.Why not oversize the inverter to gain reactive power potential?....

Case Study

- 2 MW PV Plant integration with electric cooperative system in southern U.S.
- Use fully detailed, field verified Milsoft WindMil engineering model including secondary services (transformers, triplex, etc)
- System Impact Study in preliminary data gathering stage
- Analyze situation for possible adverse operating conditions due to PV

Case Study Feeder Layout

Line SVR Reg Pt. 1 and Reg Pt. 2 reflect summer load profiles/load shapes

Accumulated X/R of 1.3 at Line SVR Reg Points

Existing Regulator Settings

			Line SVR
	Sub SVR	Line SVR	Reverse
Voltage	122	119	126
LDC R	0	5.7	0
LDC X	0	7.1	0
Time Delay	30	45	45
Bandwidth	2	2	2

PV Plant Component Derating

Item	Factor
Module nameplate DC rating	0.95
AC and DC wiring	0.97
Inverter Mismatch	0.98
Inverter Efficiency	0.965
Transformer Losses	0.95
Dirt and Debris	0.95
Total Derating	0.79
Total DC kW Rating of Panels	2,376
Net Rating	1,877 kW

Reference : NREL PVWatts Grid Calculator

Case Study Collectors are horizontal (no tilt), but rotate +/- 55 degrees east/west (110 degrees total) for sun tracking capability

Clear Sky Insolation Profiles at Site

Source: National Renewable Energy Laboratory (NREL) METSTAT (Meteorological/Statistical) solar radiation model. Developed to support production of the NSRDB (National Solar Radiation Database. Estimates hourly values of direct normal, diffuse horizontal, and global horizontal radiation.

Insolation Profile – Case Study Location 1200 1000 800 m^2 600 \ge 400 200 0 1.00 3:00 5:00 1:00 9:00 11:00 3:00 5:00 1.00 19:00 21:00 23:00 January ◆August

Insolation Profiles multiplied by de-rated kW (1877 KW) of PV Plant used to develop kW insolation curves for case study.

Summer Load Profiles With and Without PV

Voltage Regulator Operating Modes

- Case 1: Affects on Line Drop Compensation
- Case 2: Reverse Power Flow with **Bi-Directional** Mode on Line Regulator
- Case 3: Reverse Power Flow with Co Generation Mode on Line Regulator and Inverters in Unity Power Factor Mode (voltage following)
- Case 4: Reverse Power Flow with Co Generation Mode on Line Regulator and Inverters in Active Voltage Regulating Mode
- Case 5: Ramping/Intermittency

Case 1: Voltage Profiles

Summer 3 p.m.,2300 kW local load, 1600 kW PV generation (700 kW net)

<u>Node 1</u>

Prior to PV, ANSI Range A met
 With PV, Phase A voltage violation

- Node 2
- ANSI Range A met before and after PV contribution.
- Note V rise from Line SVR to PV due to reverse power flow

Note Line SVR LDC voltage boost reduced from ~5 V to ~2V

Case 2: Reverse Power Flow Through Line SVR

Node 2 Voltage Profile

Line SVR ratchets until it taps to maximum creating 10% voltage change across SVR

- Substation SVR set to 122 V
- Line SVR reverse mode set to 126 V

• Substation side of Line SVR < 126 Volts, thus Line SVR will ratchet until reaching max tap.

Potential to occur whenever active current is reversed (PV > Load), 9 a.m. – 3 p.m. winter 7 a.m. – 3 p.m. summer

Case 3: Reverse Power Flow with SVR Co-Gen Mode and Unity PF Inverter

- Co-Gen Mode set to
 120 Volts
- Note 8 Volt difference
 on Phase A between
 nodes 1 and 2

How can this voltage band be tightened?

Case 4: Reverse Power Flow with SVR Co-Gen Mode and Inverter Holding Voltage

Case 5: Ramping due to Clouding

- Calculated reasonable ramp rate of <u>~30 seconds</u> from peak generation to no generation
- Simulation --» conduct load flows for each of the following to find SVR tap positions with generator in unity power factor mode:
 - 1. Peak load w/ maximum coincidental PV kW
 - 2. Minimum load w/ maximum coincidental PV kW
 - 3. Peak PV at 12 p.m. with maximum coincidental circuit load

---» Eliminate PV generation to find ΔV
 Similar to PV disconnecting from EPS fault requiring PV to disconnect per IEEE 1547

- IEEE 1547 Series are Key Resources
- Make sure to model step voltage regulators and inverters correctly in engineering analysis software
- PV Plant Modeling and Load Review must cover:
 - Insolation Profiles
 - Coincidence of PV Output Availability Coincident with local Load
 - Operating Modes of Inverters
 - Operating Modes of Regulators
- Case Studies presented existing system loads and regulator settings to show voltage issues with PV contribution and unity PF Inverter modes
- Possible remediation's using SVR Co-Generation Modes and non-unity PF inverter modes were presented.
- Worst case voltage profiles due to intermittency and/or generation disconnect were presented
- Continue to keep an eye on IEEE 1547-8 progress

Thanks for your attention

Questions/Comments?

Greg Shirek, PE Lead Support Engineer greg.shirek@milsoft.com

Brian Lassiter Director of Engineering Analysis brian.lassiter@milsoft.com

Milsoft Utility Solutions, Inc. Abilene, TX