

Implementing CVR through Voltage Regulator LDC Settings

IEEE Rural Electric Power Conference

Sean A. Kufel, P.E. <u>kufels@powersystem.org</u>

Jeff M. Triplett, P.E. triplettj@powersystem.org

April 2012 Milwaukee, WI

Conservation Voltage Reduction

"CVR"

Minimizing end-use voltage within ANSI limits to reduce peak demand & energy consumption

Minimum Voltage Levels Permitted (120V Base): 118V on Distribution Primary 114V at Secondary Meter

Methods of Implementation

- CVR typically implemented using voltage regulators and LTCs
- Control settings
 - Manually adjust settings through SCADA or in the field
 - Typically used for only demand reduction strategies
 - Line Drop Compensation (LDC)
 - Voltage reduction on a continual basis
 - No real-time feedback
 - Dynamically through SCADA and end of the line voltage monitoring/feedback

Regulator Line Drop Compensation

- Uses a CT to monitor load current
- "R" and "X" settings (in volts) represent cumulative resistance and reactance of the downline feeder
- Regulator adjusts output to maintain a desired voltage at some downline point

Cooper Power Systems R225-10-1, "Voltage Regulating Apparatus, Determination of Regulator Compensator Settings"

Efficiency Measures

- To maximize benefits of CVR, cost effective measures to improve system voltage should be considered in advance
 - Feeder load balancing
 - Multi-phasing heavily-loaded single-phase taps
 - Feeder VAR flow control via capacitor placement
 - Voltage Regulators: placement & control settings

Case Study

- Oneida-Madison Electric Cooperative Upstate NY
- In recent years, OMEC has studied distribution optimization to improve efficiency
 - Implemented load balancing & multi-phasing, VAR optimization, and voltage regulation, and optimized substation boundaries & open points

Green Circuits Project

- OMEC participated in the EPRI Green Circuits project in 2009 & 2010
 - Attempted to identify ways to improve efficiency & reduce losses through modeling & simulation of feeders
- Simulations indicated that OMEC could reduce annual energy consumption by 0.9—1.1% and annual energy losses by 0.07—0.13% by using LDC settings on voltage regulators
- Based on the Project, OMEC moved forward with LDC implementation

LDC Settings Development & Implementation

- Used common "Load Center" method to calculate LDC settings for each regulator
- Settings were programmed & implemented in May 2011

Monitoring the Effects

- Twenty-seven meters around the system were selected for voltagemonitoring as representative of end-of-line voltage (lowest expected system voltage levels)
- Data was collected via OMEC's AMI system on hourly or fiveminute intervals, depending on the meter
- Reasons for monitoring:
 - Verify that minimum voltages were not below ANSI limits
 - Determine if voltage was being lowered as much as possible
 - Determine the impact of LDC on peak & non-peak voltage profiles
- August and November/December 2011 were periods chosen for analysis to represent summer & winter peaks

Monitoring the Effects

- LDC was disabled for a portion of each analysis period to observe the change in average voltage
- During these times, regulators were set at 125V output with 2-volt bandwidth and a 30-second delay (typical settings prior to LDC implementation)
 - Monitored August 1-31 (LDC off Aug. 8-16)
 - Monitored November 3—December 7 (LDC off Nov. 10-30)

OMEC is a strong winter-peaking system.

Results: August 2011

	Change in	Change in	
SUMMER	Voltage	Voltage	
	(120V Base)	(%, 120V Base)	
Eaton Substation	2.3	1.9%	
Oriskany Falls Substation	2.6	2.2%	
	2.0	2.270	
Fenner Substation	2.0	1.7%	

Results: November/ December 2011

WINTER	Change in Voltage	Change in Voltage	
	(120V Base)	(%, 120V Base)	
Eaton Substation	2.04	1.7%	
Oriskany Falls Substation	2.05	1.7%	
Fenner Substation	1.84	1.5%	

Results

Voltage profile was indeed lowered on an on-going basis using LDC settings

The Remaining Question:

Does a reduction in system voltage translate into energy savings?

IF SO, HOW MUCH?

CVR Factor

• Typically expressed as:

$$CVRf = \frac{\% \, \Delta Energy}{\% \, \Delta Voltage}$$

- CVR factor has been studied numerous times over two decades; average factors are highly varied.
- Since we have only collected voltage data, an appropriate CVR factor must be selected to estimate energy reduction.

CVR Factor Studies

- 1991, Snohomish Cty.: 0.5—1.5 (%ΔE/%ΔV)
- 2006, MicroPlanet:
 - 0.8 %- $\Delta kW/$ %- ΔV
 - -3.0 %- $\Delta kVAR$ /%- ΔV
- 2007, NEEA: 0.57—0.7 (%ΔE/%ΔV)
- 2010, EPRI Green Circuits (selected):
 - 0.8 %- $\Delta kW/\%$ - ΔV
 - -3.0 %- $\Delta kVAR$ /%- ΔV

CVR Factor Selection

• To promote consistency with the EPRI study (which included two of the same feeders) the same CVR factor was selected:

$\mathbf{CVRf} = \mathbf{0.8}$

• This factor was applied to the average voltage reductions to predict energy reduction.

Important note: These results are **seasonal** figures, whereas EPRI's estimates are **annual** reductions

Summary of Results

	Change in	Change in	Percent	Percent
SUMMER	Voltage	Voltage	Energy	Loss
	(120V Base)	(%, 120V Base)	Reduction ¹	Reduction
Eaton Substation	2.3	1.9%	1.5%	0.15%
From EPRI Study ²			0.9%	0.07%
Oriskany Falls Substation	2.6	2.2%	1.7%	0.17%
From EPRI Study ²			1.1%	0.13%
Example to the test of the	2.0	4.70/	4.20/	0.120/
Fenner Substation	2.0	1.7%	1.3%	0.13%
	Change in	Change in	Dorcont	Dorsont
	Change in	Change In	Percent	Percent
WINTER	Voltage	Voltage	Energy	Loss
WINTER	Voltage (120V Base)	Voltage (%, 120V Base)	Energy Reduction ¹	Loss Reduction
WINTER Eaton Substation	Voltage (120V Base) 2.04	Voltage (%, 120V Base) 1.7%	Energy Reduction ¹ 1.3%	Loss Reduction 0.16%
WINTER Eaton Substation <i>From EPRI Study</i> ²	Voltage (120V Base) 2.04	Voltage (%, 120V Base) 1.7%	Energy Reduction ¹ 1.3% 0.9%	Loss Reduction 0.16% 0.07%
WINTER Eaton Substation <i>From EPRI Study</i> ²	Voltage (120V Base) 2.04	Voltage (%, 120V Base) 1.7%	Energy Reduction ¹ 1.3% 0.9%	Reduction 0.16% 0.07%
WINTER Eaton Substation From EPRI Study ² Oriskany Falls Substation	Voltage (120V Base) 2.04 2.05	Change in Voltage (%, 120V Base) 1.7%	Energy Reduction ¹ 1.3% 0.9% 1.3%	0.16%
WINTER Eaton Substation From EPRI Study ² Oriskany Falls Substation From EPRI Study ²	2.05	1.7%	Percent Energy <u>Reduction¹</u> 1.3% 0.9% 1.3% 1.1%	Percent Loss Reduction 0.16% 0.07% 0.16% 0.13%
WINTER Eaton Substation From EPRI Study ² Oriskany Falls Substation From EPRI Study ²	Voltage (120V Base) 2.04 2.05	Change In Voltage (%, 120V Base) 1.7%	Percent Energy Reduction ¹ 1.3% 0.9% 1.3% 1.3% 1.3% 1.3%	Percent Loss Reduction 0.16% 0.07% 0.16% 0.13%
WINTER Eaton Substation From EPRI Study ² Oriskany Falls Substation From EPRI Study ² Fenner Substation	2.05 1.84	1.5%	Percent Energy Reduction ¹ 1.3% 0.9% 1.3% 1.1% 1.2%	Percent Loss Reduction 0.16% 0.07% 0.16% 0.13% 0.14%

¹ Based on a CVR of 0.8

² Note that the EPRI values are annualized, and not directly comparable to the seasonal value indicated.

Summe		imer	Winter	
CVR Factor	ΔE	∆-Loss	ΔE	∆-Loss
0.5	0.9%	1.9%	0.8%	1.6%
0.6	1.1%	2.2%	1.0%	1.9%
0.7	1.3%	2.6%	1.1%	2.2%
0.8	1.5%	3.0%	1.3%	2.6%
0.9	1.7%	3.3%	1.5%	2.9%
1.0	1.9%	3.7%	1.6%	3.2%
1.1	2.1%	4.1%	1.8%	3.5%
1.2	2.2%	4.4%	1.9%	3.8%
1.3	2.4%	4.8%	2.1%	4.2%
1.4	2.6%	5.2%	2.3%	4.5%
1.5	2.8%	5.6%	2.4%	4.8%

Notes

• November 2011 (winter study period) was not as cold as is typical during a winter peak; energy and loss reductions would likely be lower during true winter peaks

• EPRI's annualized calculations are probably indicative of the potential energy reductions across the entire OMEC system

Conclusions

- Line Drop Compensation feature of regulator controls can be successfully used to lower voltage within acceptable limits
- LDC settings must be carefully developed, considering loading and characteristics of the electrical system, to achieve long-term voltage reduction.
- Ongoing voltage monitoring is recommended to confirm the effectiveness of LDC settings.

Additional Conclusions

- Determining average voltage reduction levels is relatively straight-forward
- Estimating demand savings during peak time periods (not the focus of this paper) can be done relatively easily with engineering models
- Estimating energy savings is challenging and complex
 - Loads over time react differently to changes in voltage
 - Example: thermostat controlled loads
 - CVR factor attempts to quantify this
 - Remember that energy reductions are primarily derived from reductions in sales, not losses!

Questions?