About the Seasonal School:

The Seasonal School in “Circuits and Systems for the Internet-of-Things” (CAS4IoT) presents a joint academia–industry program in the field of IoT. It aims at preparing a group of 50+ post-graduated students and design Engineers with the capacity to understand and design a broader range of circuits and systems, in the field of IoT, spanning from data converters for sensor interfaces to radios, ensuring a good balance between academia and industry, combined with a judicious selection of worldwide distinguished Lecturers.

The Department of Electrical Engineering (DEE) at the Faculty of Sciences and Technology at NOVA University of Lisbon (FCT NOVA) together with the Centre of Technology and Systems (CTS) at UNINOVA Institute have organized this IEEE CASS sponsored Seasonal School. Having more than 100 PhD students working in the fields of IoT and cyber-physical systems, DEE and CTS are currently providing most of the human and material resources needed to successfully run this Seasonal School.

http://sites.ieee.org/portugal-btcasce/cas4iot

About the “Hands-On” [Modules 7, 8, 11, 12]

Complementing the theoretical material presented on all morning sessions, the proposed course includes 4 x 2 hours hands-on lab sessions, during two afternoons, where IoT demo projects will be implemented.

The course demo project will consist on the design and implementation of a multi-sensor system using a programmable and commercial SoC platform. The same platform will have also to monitor the state of the battery (through voltage sensing) and use this information to feed the power management implemented algorithm.

About the Venue

The CAS4IoT course venue will be located in the main building of the Library of the Faculty of Sciences and Technology (FCT), Nova University of Lisbon (FCT NOVA), at the Campus of Caparica, in south Lisbon. FCT NOVA is one of the most prestigious Portuguese engineering and science public schools and it is located in Caparica, Almada, just across the Tagus River. The Campus of Caparica is served by a wide transport network, including combined services (bus, train, ferry) and by tram.

Registration Link

Sponsors

Monte da Caparica
LISBON
Portugal

Sponsors

Monte da Caparica
LISBON
Portugal

Seasonal School Distinguished Lecturers

Module 1
Ultra-low voltage and micro-power analog circuits for IoT
Designing low power and low voltage analog circuits for IoT systems is challenging. Many applications require analog circuits working with sub-1 V supply voltages and with power consumption in the hundreds of mW range while preserving good performances. The present target is to have analog circuits operating at sub-0.5 V or less. With that supply voltage it is required to design basic building blocks like operational amplifiers, comparators and voltage reference generators. For each of them, the presentation briefly reviews the state of the art and presents some recently published examples of implemented solutions.

Franco Maloberti
Univ. of Pavia
Pavia, ITALY

Module 2
SAR ADCs for IoT: Basics and Innovations
This lecture will cover the basics and recent innovations in the field of SAR ADCs for IoT. Even though SAR ADCs have been known for a very long time, they are receiving renewed interest thanks to their low-power, low cost and simplicity thanks to their power-efficiency and beneficial scaling with technology. This lecture starts with a basic overview of SAR ADC design, and continues with discussing several recent innovations aiming for better power efficiency, improved performance and more versatility.

Pieter Harpe
Eindhoven University of Technology
Eindhoven, THE NETHERLANDS

Module 3
Ultra-low voltage and ultra-power analog circuits for IoT
Designing low power and low voltage analog circuits for IoT systems is challenging. Many applications require analog circuits working with sub-1 V supply voltages and with power consumption in the hundreds of mW range while preserving good performances. The present target is to have analog circuits operating at sub-0.5 V or less. With that supply voltage it is required to design basic building blocks like operational amplifiers, comparators and voltage reference generators. For each of them, the presentation briefly reviews the state of the art and presents some recently published examples of implemented solutions.

Franco Maloberti
Univ. of Pavia
Pavia, ITALY

Module 4
Industrial IoT
The contents will cover two case studies of real world applications of IoT: one based on wireless IoT to control hazardous industrial equipment, and the other based on satellite radio for machine communications. The decisions concerning the architecture choices, block performance, and issues related to the IC process choice will be detailed. Selected topics on interfaces, power, IC realization and measurement will be presented.

Noel O’Biorian
53 Group
Dublin, IRELAND

Module 5
Power-and-Energy Management for IoT
Traditional Power Management Units (PMUs) generate reference voltages and currents, produce power on reset signals and control the system start-up sequence, sequencing the enabling of voltage regulators. The new generation of PMUs, targeting IoT applications, is capable of entering a different power gated modes, achieving nano-Amp range operation, being controlled by the Real Time Clock (RTC), why now are RTCs being used as brains of the IoT PMU? It is going to be analyzed in the “Power-and-Energy Management for IoT” module.

Leonel Sousa
IST/UL, INESC-ID
Lisbon, PORTUGAL

Module 6
Microprocessors/MCU’s for IoT
In the “Microprocessors/MCU’s for IoT” module, the state of the art architectures of the current MPUs and MCUs will be analyzed, as well as the benchmarks for evaluating their power and performance efficiency. Furthermore, the support for interconnection and communication with users, things and cloud services will also be discussed. Examples of commercial MPUs and MCUs will be provided, and the main investigation paths for developing the future processing devices for the IoT will be underlined.

Leonel Sousa
IST/UL, INESC-ID
Lisbon, PORTUGAL

Module 7
Radio Building Blocks for IoT
Module contents: Short range wireless markets; Overview of the BLE standard; BLE Radio Specifications: i) RX, TX, Synth specifications; 2) Current market specifications; BLE Architecture and Design of Functional Blocks; Specifications of radio building blocks; Architecture and Design of radio building blocks; Performance of state of art BLE Radios.

Augusto Marques
CST Aura Semiconductors Banglore, INDIA

Module 8
Power-and-Energy Management for IoT
Traditional Power Management Units (PMUs) generate reference voltages and currents, produce power on reset signals and control the system start-up sequence, sequencing the enabling of voltage regulators. The new generation of PMUs, targeting IoT applications, is capable of entering different power gated modes, achieving nano-Amp range operation, being controlled by the Real Time Clock (RTC), why now are RTCs being used as brains of the IoT PMU? It is going to be analyzed in the “Power-and-Energy Management for IoT” module.

Leonel Sousa
IST/UL, INESC-ID
Lisbon, PORTUGAL

Module 9
BLE Radio Architectures and Design for the IoT Market
Module contents: Short range wireless markets; Overview of the BLE standard; BLE Radio Specifications: i) RX, TX, Synth specifications; 2) Current market specifications; BLE Architecture and Design of Functional Blocks; Specifications of radio building blocks; Architecture and Design of radio building blocks; Performance of state of art BLE Radios.

Augusto Marques
CST Aura Semiconductors Banglore, INDIA

Module 10
Nanosensors, from fundamentals to IoT deployments
The module discusses the new sensing opportunities provided by nanotechnologies. After a brief overview of the current status of nanotechnologies, it presents a review of existing types of nanosensors. The different options for fabrication are summarized before moving on to detailing some of their electrical and sensing features. Two of the challenges of nanosensors, irreproducibility and reliability, are explained in depth. Finally, we discuss how to integrate nanosensors into IoT devices to carry out their deployments in the field.

Bérengère Lebental
Research Scientist at IST/STAR
Paris, FRANCE

Module 11
IoT Demo Project: Analog Front-end
In this module, different approaches for realizing ultra-low-power, moderate and high resolutions Sigma-Delta architectures will be presented. As the title suggests, the module will discuss the different building block design methodologies for Sigma-Delta modulators for IoT.

Marcelino Santos
Eindhoven University of Technology
Eindhoven, THE NETHERLANDS

Module 12
IoT Demo Project: PMU Voltage Battery monitoring
In this module, different approaches for realizing ultra-low-power, moderate and high resolutions Sigma-Delta architectures will be presented. As the title suggests, the module will discuss the different building block design methodologies for Sigma-Delta modulators for IoT.

Marcelino Santos
Eindhoven University of Technology
Eindhoven, THE NETHERLANDS

Module 13
Power-and-Energy Management for IoT
Traditional Power Management Units (PMUs) generate reference voltages and currents, produce power on reset signals and control the system start-up sequence, sequencing the enabling of voltage regulators. The new generation of PMUs, targeting IoT applications, is capable of entering different power gated modes, achieving nano-Amp range operation, being controlled by the Real Time Clock (RTC), why now are RTCs being used as brains of the IoT PMU? It is going to be analyzed in the “Power-and-Energy Management for IoT” module.

Leonel Sousa
IST/UL, INESC-ID
Lisbon, PORTUGAL

Module 14
Radio Building Blocks for IoT
Module contents: Short range wireless markets; Overview of the BLE standard; BLE Radio Specifications: i) RX, TX, Synth specifications; 2) Current market specifications; BLE Architecture and Design of Functional Blocks; Specifications of radio building blocks; Architecture and Design of radio building blocks; Performance of state of art BLE Radios.

Augusto Marques
CST Aura Semiconductors Banglore, INDIA

Module 15
Power-and-Energy Management for IoT
Traditional Power Management Units (PMUs) generate reference voltages and currents, produce power on reset signals and control the system start-up sequence, sequencing the enabling of voltage regulators. The new generation of PMUs, targeting IoT applications, is capable of entering different power gated modes, achieving nano-Amp range operation, being controlled by the Real Time Clock (RTC), why now are RTCs being used as brains of the IoT PMU? It is going to be analyzed in the “Power-and-Energy Management for IoT” module.

Leonel Sousa
IST/UL, INESC-ID
Lisbon, PORTUGAL

Module 16
Nanosensors, from fundamentals to IoT deployments
The module discusses the new sensing opportunities provided by nanotechnologies. After a brief overview of the current status of nanotechnologies, it presents a review of existing types of nanosensors. The different options for fabrication are summarized before moving on to detailing some of their electrical and sensing features. Two of the challenges of nanosensors, irreproducibility and reliability, are explained in depth. Finally, we discuss how to integrate nanosensors into IoT devices to carry out their deployments in the field.

Bérengère Lebental
Research Scientist at IST/STAR
Paris, FRANCE

Registration Fees

<table>
<thead>
<tr>
<th>Registration Fees</th>
<th>Before 6th November 2016</th>
<th>After 6th November 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE-CAS Member</td>
<td>€ 390</td>
<td>€ 440</td>
</tr>
<tr>
<td>IEEE Member</td>
<td>€ 440</td>
<td>€ 490</td>
</tr>
<tr>
<td>Non-Member</td>
<td>€ 490</td>
<td>€ 540</td>
</tr>
</tbody>
</table>