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=8 Briefing Objective

AProvide an understanding of thieles for Data Fusion & Resource
Management (DF&RM)

ADescribe how the Data Fusion heritage can be used @odzy i) dudl ¢
Resource Management solutions

ADescribe DF&RMual Node Network (DNN}chnical Architecture

AProvide Problento-Solution Mappings for Data Association

AProvide BaselinMax A Posteriori (MAMR)ata Association Hypothesis
Evaluation Equations




A ).

X DF&RM Dual Node Network (DNN) Technical Architecture
U Distributed Data Fusion Node Networks

U Data Association Hypothesis Evaluation Alternatives
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AData Fusion is the process of combining data/information to
estimate or predict the state of some aspect of the world.

AResource Management is the process of planning/
controlling response capabilities to meet mission objectives
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{l Architectures are frequently used mechanisms to address a broad range
common requirements to achievateroperability and affordability
objectives

An architecture (IEEE definition) Is a structure cbmponents their
relationships and the principles andjuidelinesgoverning their design and
evolution over time

T An architecture should:

A Identify a focused purpose with sufficient breadth to achieve affordability objectives
A Facilitate user understanding/communication

A Permit comparison, integration, and interoperability

A Promote expandability, modularity, and reusability

A Achieve most useful results with least cost of development
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Data Services: Pedigrees, Access, Query

ISR Tactical = Operations Apps

Model Services | Metrics

Core Information Environment
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U Data Mining discovers and models some as aspect of data input to each fusion level
U Data Fusion combines data to estimate/predict the desired state at each fusion level



0 BTWC 2lected 10 bale 2 FPerg = D & 0
Least Knee-of-the Curve Best
Complex Fusion Tree Performance
Tree Tree

Single Platform All Platforms

Single Sensor All Sensors/Sources

All Past Times

Single Time

Single Data All Data Types

Type
Data Fusion Curveo Deslign
Performance

Data Fusion Cost/Complexity



»
e

’ - ' A ) A
B A D 0
Centralized Hierarchical
Past Time Trow Past Time Triow
o o
Sensors Sensors
Data
Fusion
Trees S
— — )
Trowr Time Horizon Tronw Time Horizon
| - | -
F‘%esouL ResouL
Resource 1 Y
Management
Trees -

— —

* High performance
* High complexity/cost

+ Sufficient performance
* Reduced complexity/cost

Fusion tree defines hatching of data by
- Sensorfsource

- Pasttime

- Datatype

Management tree defines hatching of
commands by

- Resource (sensor of response
- Time hotizon
- Command type

Each node in each tree generates, |
evaluates, and selects solutionsfor|:
knee-of-the-curve performance vs. |
cost :
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Association

AEproit overlapping
measurement observables

/&Generate, evaluate & select
association hypotheses

Estimation

AEproit independent
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parameters to compute estimates

RESOURCE MGMT

(I
DUALIT

]

Management Architecture

R

~ N\ e
A‘nFamuto Tr ee S
Mgmt o

Nodes r

C

e

S

ATask batching by resource,
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>Exp|oit overlapping resource
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/&Generate, evaluate & select
response plans
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AJse assignments w/ performance
parameters to compute control
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: AE! m = Measurements (pixels, waveforms, etc.)
HSI — g s,d s = States (continuous parameters)
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A Probabilistic: Preferred if statistics known

> Chi-Square Distance

i Doesndt require prior densities
I Useful for comparing multi-dimensional Gaussian data

I However, no natural way to incorporate attribute and a priori data

> Max Likelihood
i Doesndot require uncopxitional prior densities,

i Does require conditional priors, p(Z|x)

> Bayesian Maximum a Posteriori (MAP)

i Naturally combines kinematics, attribute, and a priori data
T Provides natural track association confidence measure

I However, requires prior probability (e.g. kinematics and class) densities; difficult to specify



Applicability of Alternative Scoring Schemes (2 ¢

A Non-Probabilistic: Useful if high uncertainty in the uncertainty
> Evidential (Dempster-Shafer)

I Non-st atistical: User specifies evidence Amasso
I Essentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple knowledge combination
rules)

> Fuzzy Sets
I User specifies membership functions to represent the uncertainty-in-the-uncertainty

I User specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min) which are much easier
compute than second-order Bayesian

I More complex to develop, maintain, and extend
> Confidence Factors and Other ad hoc Methods
I Explicit derivation of logical relationships
I Generally ad hoc weightings to relate significance of factors
I Can include information theoretic and utility weightings




AChisquare ( I\/Iahalanobis) Scoring
AINV=[R-T,]k b 174 = Z/[1+1]=2
AINV=[R-TK b T ] A[[1+16]=16/17
AR associated to 1 sigma away but further
distance away less accuratg T

Selected

|I 1
R, = T2:2 T4
1

Input Réport

AMax.a Posterior{Bayesian) T, Selected

A®H ~Se(B5V1) =[6.28*2}°

e(-.5[R-T,]°k b 7)) ~.28 €~ .10

AWH - ~5£(85V1) =[6.28*17}°e(-.5[R-
T3k &b 1£]) ~ .097 e*’~ .060

AR is associated to the closer more accurgte T r 12 7.




Deterministic Data Association then target estimation

le‘l‘x P(H|REPORTS) = MAX[P(REPORTS|H)P(H) THEN MAX P(q ||/-\|)
H q

A Target state estimation with probabilistic data association

MAX P(q |REPORTS) = MAX[ & P(REPORTS|H,q)P(H|9)]R 9)
q g H

A Joint association decision and target state estimation

MAX P(H,q |REPORTS) = MAX[ MAX P(¢|REPORTS, H)IP(H|REPORTS)
Hiq H q

H Is the association hypothesis and Theta is the track state.




AThe total scene hypothesis score is the product of the individual hypothesis
scores for the 5 possible hypothesis types:

A association hypotheses

A pop-up (i.e., track initiation) hypotheses

A input false alarm (FA) hypotheses

A track propagation (missed coverage) hypotheses
A drop track (false track) hypotheses

APd and Pfa use track association confidences and incorporate the entity birt
death statistics

ATrack confidence estimates are needed to differentiate the 5 hypotheses typ

AWhen the class tree uncertainig-the-uncertainty is high it is not used in scori



=81 Source Noncommensurate Attributes Scored Using s

1 Sources 1 & 2 havencommensuratattributes if for an exhaustive set of
disjoint of entity classes, K,

P(Z(9| Z(S), Class K($), H) = P(Z(H Class KY(S), H)

where,

T Z(9is the set of measured attributes (i.e., all non kinematics measurements) from e
source |,

{'H is the association hypothesis between sourges S,
1Y(9 are the measured kinematics from the two sources

1 All source attributes not conditionally independent are treated as separately
commensurate parameters

AFor commensurate sources, feature differences are scored



Entity Type Declarations (Statistics per Truth Type)

Helicopter (M)
- Manually classified: 1.0

Tracked VVehicle (A)

Unkn0\|Nn AM ‘

- includes personnel Unclassified (A)
-includes helicopters if -No ATR

automatically detected .
Wheeled Vehicle (A)

T72 MG0O MIAZ2 Challenger \agrrior
AM A AM MM (M)
T72: 36 ] ML: 53.6
M60: 1.6 T72: 1.6
Mil: 1.6 M60: 2.4
BMP: 20 BMP: O
Fv432: 10.4 Fv432: 11.2
Spartan: 10.4 Spartan: 11.2
HMIVWW: O v HMMWV: O
Unknown: 20 Unknown: 20
_Il\fé) 5)3 6 Note: Values based on
ML 5.6 simulation test results
BVP: O except for FvV432, Spartan,
F\/432: 10.4 and Un_known which were
Spartan: 10.4 | &dded in based on
HVIVMA: O engineering judgment.
Unknown:20

BMP
AM

M1

/432 Spartan
AM)

R\/432: 41.6
T72:
MG60: 6.4

BMP: 6.4

HMVWWV  Range Rover
AM M)

HMMVWNV:40
T72: 1.6
M60: 4.8
M1: O

BMP: 16

AM)
6.4

6.4

V

Spartan: 6.4
HMMWV: 6.4
Unknown: 20

F\Vv432: 8.8

v Spartan: 8.8
Unknown: 20

BMP: 50.4
T72: 5.6
MGE0: 1.6

M1: O

Fv432: 10.4
Spartan: 10.4
HMMWV: 1.6
Unknown: 20

Spartan: 41.6
T72: 6.4

MGE0: 6.4

Ml: 6.4
BMP: 6.4
FVv/432: 6.4
HMMWV: 6.4
Unknown: 20

A: automated
M: manual



ax a Posteriori Association Hypothe oring

The total scene hypothesis score is the product of scores for 5 types of S to T assc
hypotheses of kinematics, Y, attributes, Z, and entity class confidences, K:

1.

Association Hypotheses

PY(S)IY(T).H) P(Z(S), Z(MIY(S), Y(T), H) P(H) ={|V] 2} exp[-1/2{I TV-1I]]
T{Sk[P(K|Z(T),Y(T), H) P(K|Z(S),Y(S), H)/P(K|Y(T),Y(S), H)I} TI[1-Pea (9S)]
[1- Pea(T)] Po (S) B (T)

Pop-up (i.e., Track Initiation) Hypotheses

P(Y(S)IY(T).H) P(Z(S), Z(DIY(S), Y(T), H) P(H) = {E(IV] 2 )} exp[-1/72{n}] 1
[1-Pra (S)] [1- Po(T)] Po (S)

False Alarm (FA) Hypotheses

PY(S)IY(T).H) P(Z(S), Z(MIY(S), Y(T), H) P(H) ={ E(IV| 2 )} exp[-1/72{n}] 1
Pea (S) B (S)

Propagation Hypotheses

PY(S)IY(T).H) P(Z(S), Z(MIY(S), Y(T), H) P(H) =[1 -Pra (T)] [1- Po(S)] P (T)
Track Drop Hypotheses

P(Y(S)|Y(T),H) P(Z(S), Z(MIY(S), Y(T), H) P(H) = Pera(T) Po (T)



= =/ =/ = =4 =4 =4 =4 =45 =

Y(S) are the sensor report Gaussian kinematics with covariance R
Y(T) are the track Gaussian kinematics with covariarigce P

H is one of 5 association hypothesis types, E is expect@atmon

|V| is determinant of innovations covariance, V = HJ/H" + R,

mis the mean of the chéquare statistic (i.e., YW1}

| is the innovations vector, | = Y{$) Y(T),

P(K) are the confidences of the disjoint entity class tree,

Z(T) [Z(S)] are the parameters/attributes from the track [report],
P5(S) [B(T)] is the sensor [track file] probability of detection

P-A(S) [RA(T)] is the sensor [track file] probability of false alarm,



AtoYu50 T t ;PN PD frth T) whege

A P(K|D) is the probability of the entity being of clasgi¥en the specified sensor declaratiorifat is computed
for all the possible disjoint classes. These terms are inserted for the n P(K|Z(S),Y(S), H) sensor report dis
classification type confidences.

A P(K) is the a priori probability of the entity being of class K

A P(DIK) is the probability that the declaration D is made given the entity is of class K from the declaration
confusion matrix

A P(D |Truth T) is the probability of the specified declaration D given the entity is of truth type T from the
declaration confusion matrix where T varies over the possible scenario truths

A P(Truth T) is the a priori probability of the truth in the scenario being of type T where T varies over the po
scenario truths



AUses the separation point on the PDF as the kinematics score, s
high uncertainty tracks do not overly attract reports as wfsguare
scoring

ABayesian scoring and update of the classification uncertainties w
pedigreeof noncommensurates used for class error correlation
compensation or separate noncommensurate class vectors

ATrack confidence estimatigorovides rigorous basis for the scoring
the four nonassociation hypotheses

AMisalignmentbias states & uncertainties added for scoring and to
remove relative misalignments
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APropagation of Probability for Entity Track in Consistent Operatic
Picture (COP) & False Track

ATrack Confidence Contribution to Association Hypothesis Scorin

AUpdate of Probability of Entity Track in COP and False Track
Confidences With Track Propagations and Pop Ups

AUpdate of COP Probability of False Track for Associated Tracks,
Propagated Tracks, & Pop Ups
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A A ° - A A a a
8 A : ¢ 0 A 0
Methods | Approach Event Problem Solution Costs/Risksg Performance| Verification Speed
Representatiof Domain |[Development
Ad Hoc analyst table look-up | predefined [rule-of-thumb| simple not |approximate;|all cases fast table look-up
driven fixed upgradable |brittle tested
features
Probabilistig algorithm |pointwise rigorously [analyst solveq upgradable |precise; alternative path | via path
driven probability defined rigorously SW extendable [tests parallelization
features
Possibilistic| algorithm [uncertainty-in-| feature analyst solveg upgradable;B r o a d e |alteragtiye padh;| via path
driven the-uncertainty uncertaintiegpproximatior] more extendable [tests parallelization
known complex
Logic/ rule driversetwise degreq expert expert define| rule gets close; [rules explanationvia rule
Symbolic of membershig described [rules compatibilityyiser adaptable parallelization
features scalability
Neural self- firing level unknown [data driven; | training approximate; [numerous trainipghassively paralle
Networks [ organizedjpatterns feature user objective breadth; HWhon-linear cases chips
relationships$ scalability |interpolation
Unified algorithm [normalized combinatiorfanalyst solved most most breadth|alternative path | via approximation
& rule representation| s of the hybrid complex tests
driven above




) - Adluadll( O DIC
N\
( IS JOINT PROBABILITY DENSITY FUNCTION ~ —CYES D)—> PROBABILISTIC @
VES > SUFFICIENTLY KNOWN?
L POSSIBLISTIC & NON-PARAMETRIC ?)
S A CONSISTENT MATHEMATICAL BASI J

FOR SCORING NEEDED?

<
é IS HIGH THROUGHPUT PER WATT SELF-CODING — YES )—> NEURAL NETWORKS 4)
NO

PATTERN RECOGNITION NEEDED?
LOGIC/SYMBOLIC & AD HOC )

Logical, Symbolic and ad hoc
Hypothesis Evaluation Technique Selection

®3) Possibilistic, Non-Parametric and other Rigorous (5)
Hypothesis Evaluation Technique Selection

s oL Leamni ©
e -
iy P
CD—>{  oliReUToN - i 4) Neural Network
| | SUFFICIENT? \Vlfi SET THEORY H th . E | t T h ) S | t SCRIPTS/IFRAMES ]
— ypothesis Evaluation Technique Selection
Probabilistic
[ (2 S I \II UNSUPERVISED CLUSTERING NN ] YoTEM RULES ]

Hypothesis Evaluation
Technique Selection

SETS AVAILABLE?

QES)
IS CONSIDERATION OF PRIOR I - 3 [
PROBABILITIES NEEDED? & BAYES APOSTERIORI ]

ARE SUFFICIENT HYBRIDS ]
SCORING TRAINING
RECURRENT SUPERVISED NN ]

P T

JOINTG AUSSIANDIFFERNG PE#E@QEORE(EI’SAE(I\)FF%N
(YESD NO
DIMENSIONAL SCORING NEEDED? ]—._[ e R X ERE ] NEEDED?

[ LIKELIHOOD RATIOS ]

]

FEED-FORWARD SUPERVISED NN ]




Performance (log scale)
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Problem Difficulty (log scale)
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nathe alection Prohle

ANeed to Search through Association Matrix to find best

Global Hypothesis Reports
cn TYPES OF GLOBAL
-;éé Scores HYPOTHESIS
AAssociation Matrix: " Set Partitioning
ATypes of Global Hypotheses
A Set Partitioning: no two tracks (local hypotheses) share a report
A Set Covering: There may be shared reports Q
AN-D Approaches: Search All Scans by All Sources

AGlobally Optimal Solution
AComputationally Demanding
(NPRHard: ¢ Exponential RTime)
A2-D Approaches: Search only Current Scan "
ALocally Optimal Solution ‘
APolynomial RuTime

Set Covering




Current Reports

No Observation

IN[P(R, T4 | -IN[P(R,,T,| | -IN[P(Rs, T4 | -InP(H,) inf
current H)P(H)] H)P(H)] H)P(H)]
Tracks| -In[P(R.,T,| | -IN[P(R,,T,| | -INn[P(Rs, T, INf -InP(H.,,)
H)P(H)] H)P(H)] H)P(H)]
-InP(H,) INf INf O O
Track - -
Initiation INf -InP(H,) INf O O
or FA INnf Inf -InP(H,) 0] O
Adb2 hoaSNIIGA2Yy ¢ O2f dzyya I RRSARfalsedr ppgagd

tracks for unassociated tracks

Adb2

| A820AFGAR2YE

tracks for unassociated reports
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Sncommensurate Sources

P(class CJ all; sH) =R; [{PC|S,H/P(C|Y(3all 1), H)} P(C| Y(®r all 1), H)] } 5 {P; {PK|S,H)/P(K] Y(Fall 1), H)}
P(K| Y(Sfor all i), H)J}

if P(C|H) O [=0 if P(C|H)=0]
1 Cisthe element of the fused entity class tree being updated,
{ Sfor each source i is its measured data [both kinematic and attribute]

1 P(C|Y(Z, H) is the probability of an entity of type C given only kinematics data from source i & H, the
association hypothesis,

1 Kis the index of type disjoint tree classes [summed over for normalization],

1 P(CJ|S,H) are the entity class tree confidences based upon all measurements from each source i
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