

Data Fusion & Resource Management (DF&RM) Dual Node Network (DNN) Association Hypothesis Evaluation

Christopher Bowman, PhD. Data Fusion & Neural Networks (DF&NN) Sept 2020

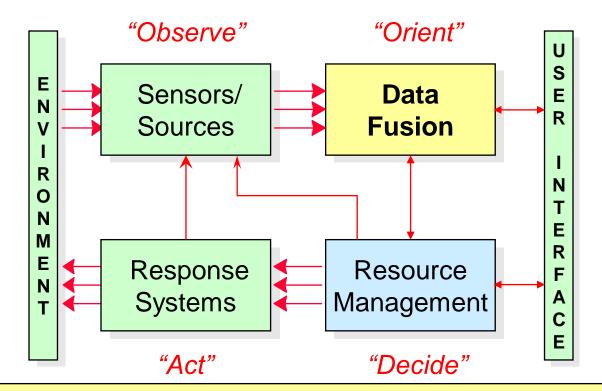
- Provide an understanding of the roles for Data Fusion & Resource Management (DF&RM)
- Describe how the Data Fusion heritage can be used to "jump-start" dual Resource Management solutions
- Describe DF&RM Dual Node Network (DNN) Technical Architecture
- Provide Problem-to-Solution Mappings for Data Association
- Provide Baseline <u>Max A Posteriori (MAP)</u> Data Association Hypothesis Evaluation Equations

DF&RM Dual Node Network (DNN) Technical Architecture

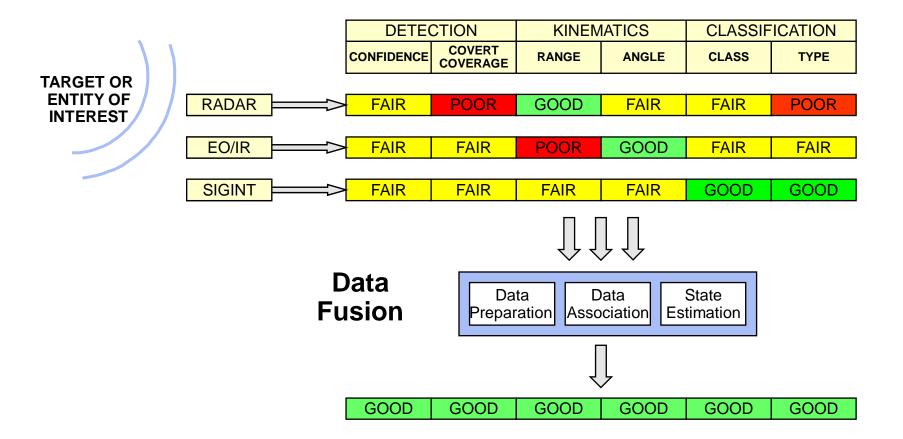
Distributed Data Fusion Node Networks

Data Association Hypothesis Evaluation Alternatives

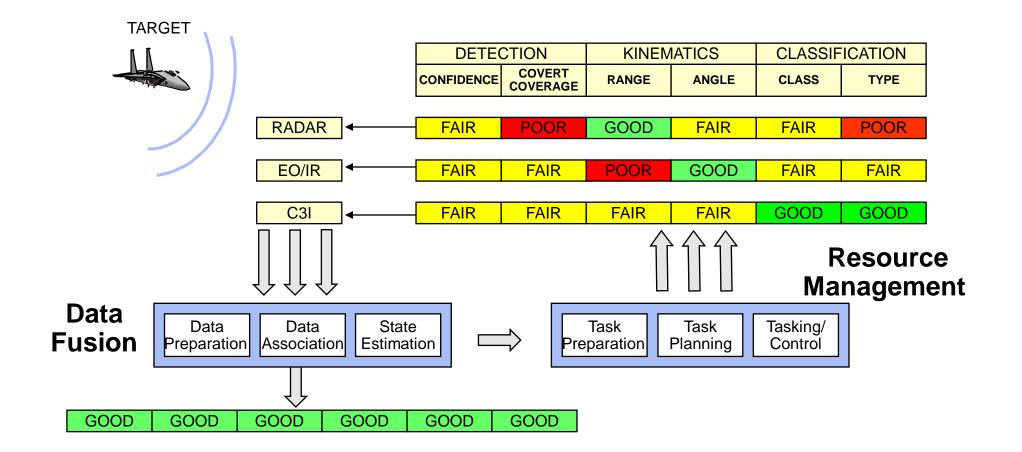
Fusion & Management Lie in the Gap Between "Observe" and "Act"



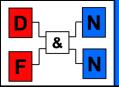
- **Data Fusion** is the process of combining data/information to estimate or predict the state of some aspect of the world.
- Resource Management is the process of planning/ controlling response capabilities to meet mission objectives

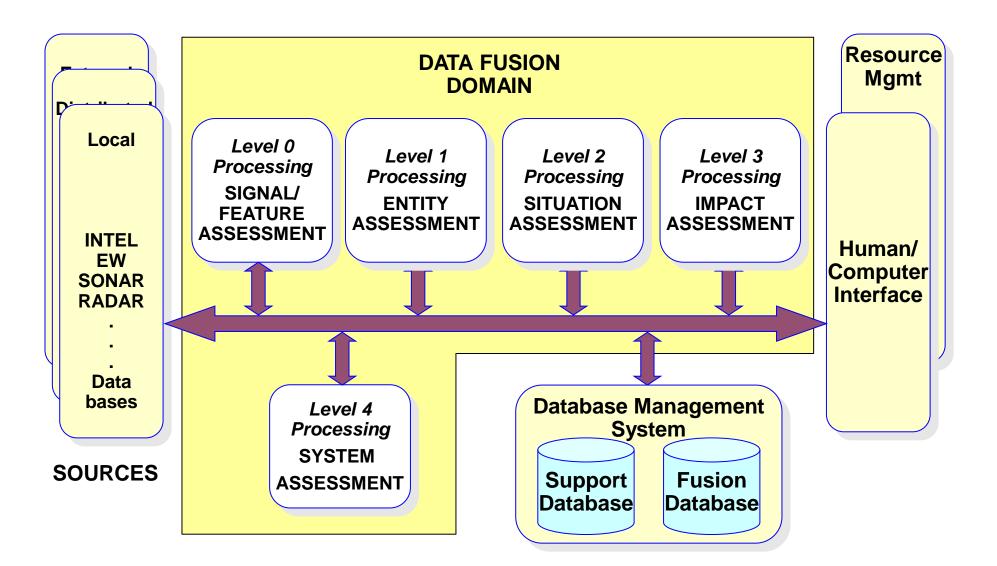


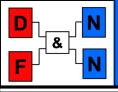
Data Association Uses Overlapping Sensor Capabilities so that State Estimation Can Exploit their Synergies



Sensor Task Planning Uses Overlapping Sensor Capabilities so that Control Can Exploit their Synergies



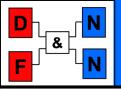




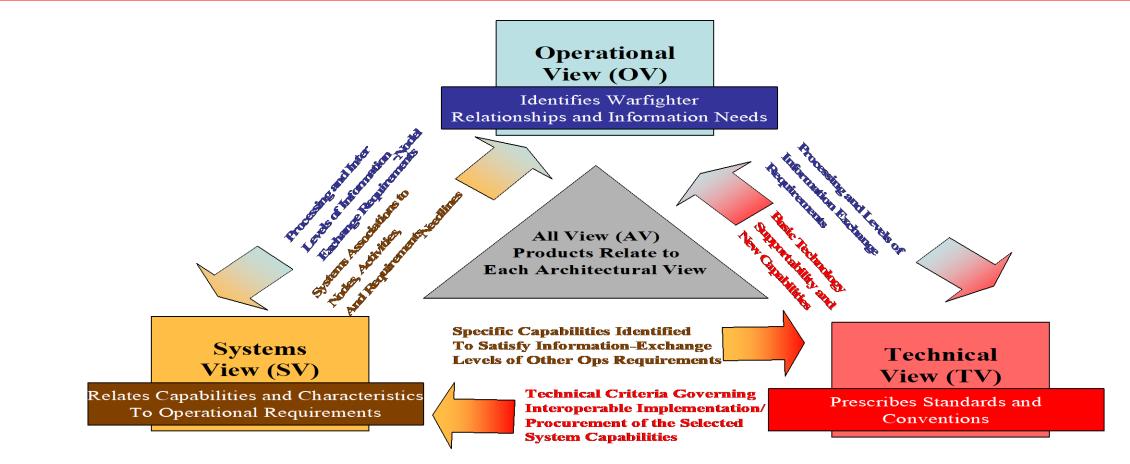
- Architectures are frequently used mechanisms to address a broad range of common requirements to achieve <u>interoperability and affordability</u> objectives
- An architecture (IEEE definition) is a structure of <u>components</u>, their <u>relationships</u>, and the principles and <u>guidelines</u> governing their design and evolution over time

• An architecture should:

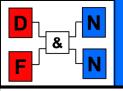
- Identify a focused purpose with sufficient breadth to achieve affordability objectives
- Facilitate user understanding/communication
- Permit comparison, integration, and interoperability
- Promote expandability, modularity, and reusability
- Achieve most useful results with least cost of development



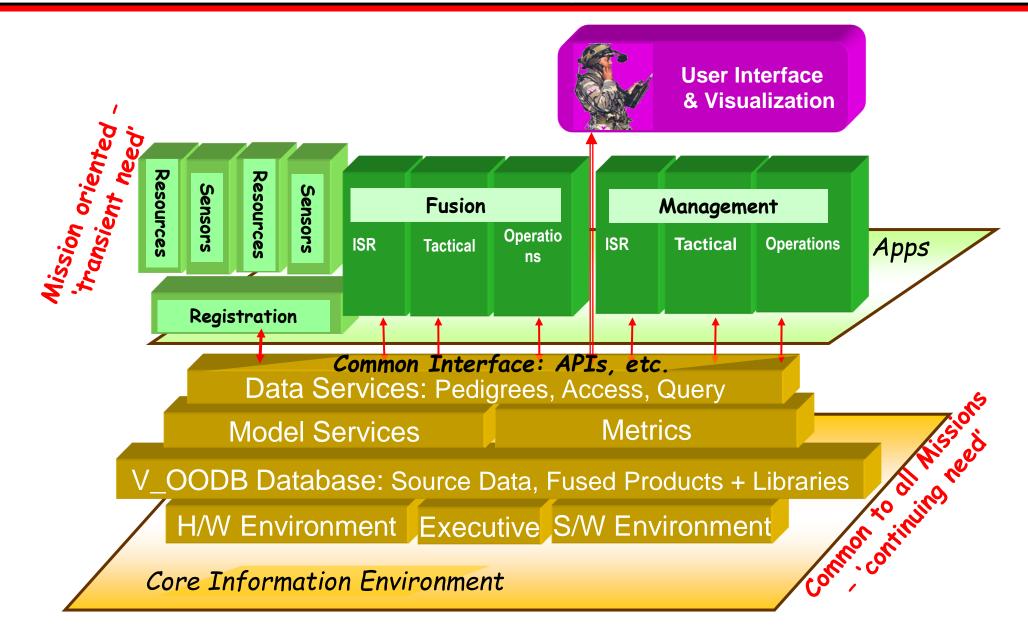
Role for DF&RM DNN Technical Architecture Within the "DoD Architecture Framework"



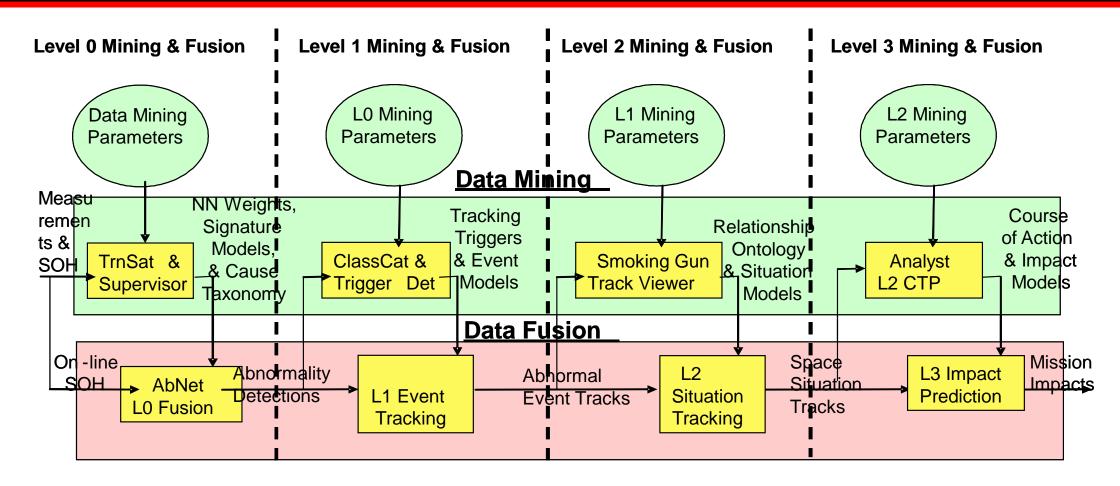
- The operational architecture provides the "what and who" operational needs
- The technical architecture provides "problem-to-solution space" guidance
- The systems architecture defines the "how" to build the operational system



DF&RM DNN Technical Architecture Applies at Application Layer

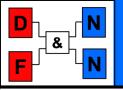


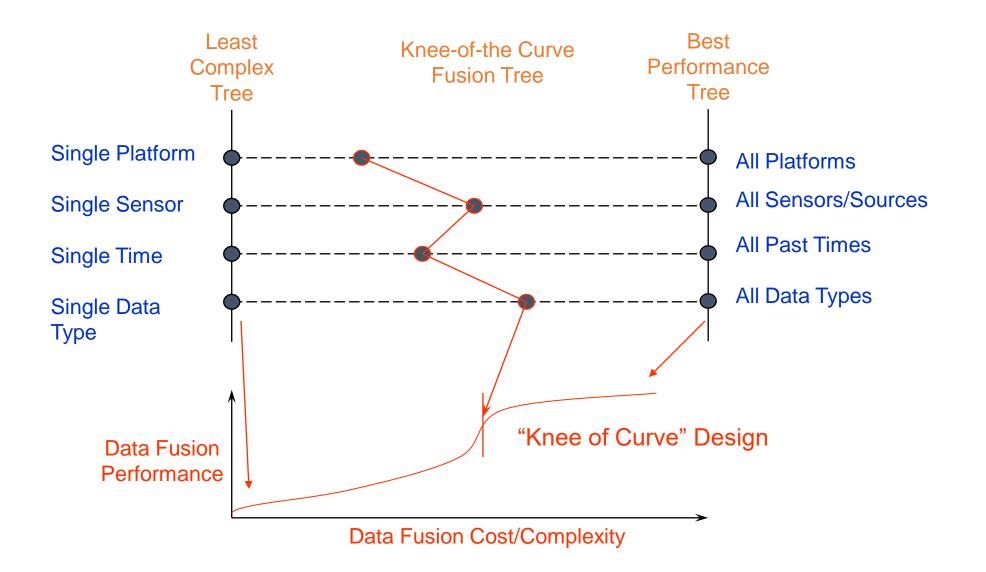
Data Mining Provides DF&RM Models

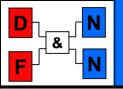


> Data Mining discovers and models some as aspect of data input to each fusion level

> Data Fusion combines data to estimate/predict the desired state at each fusion level

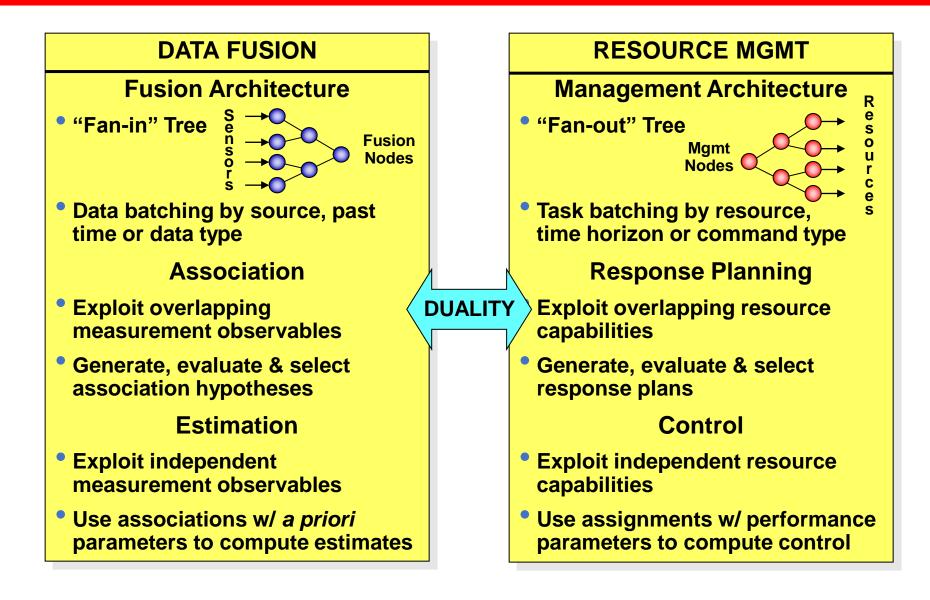


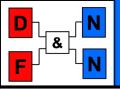




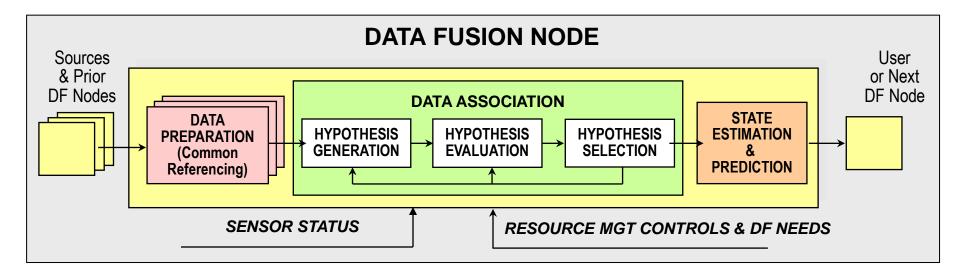
DF&RM Trees Divide & Conquer the Problem

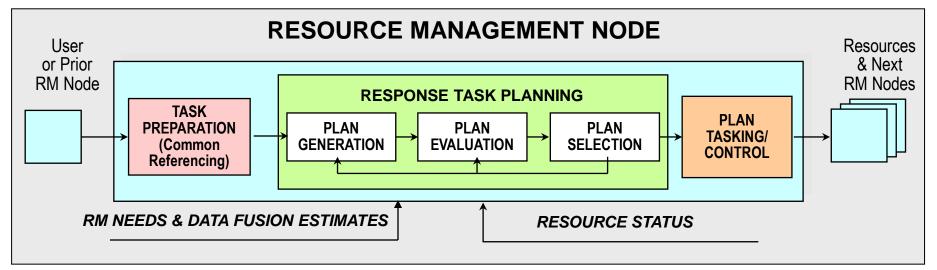


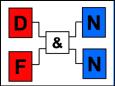




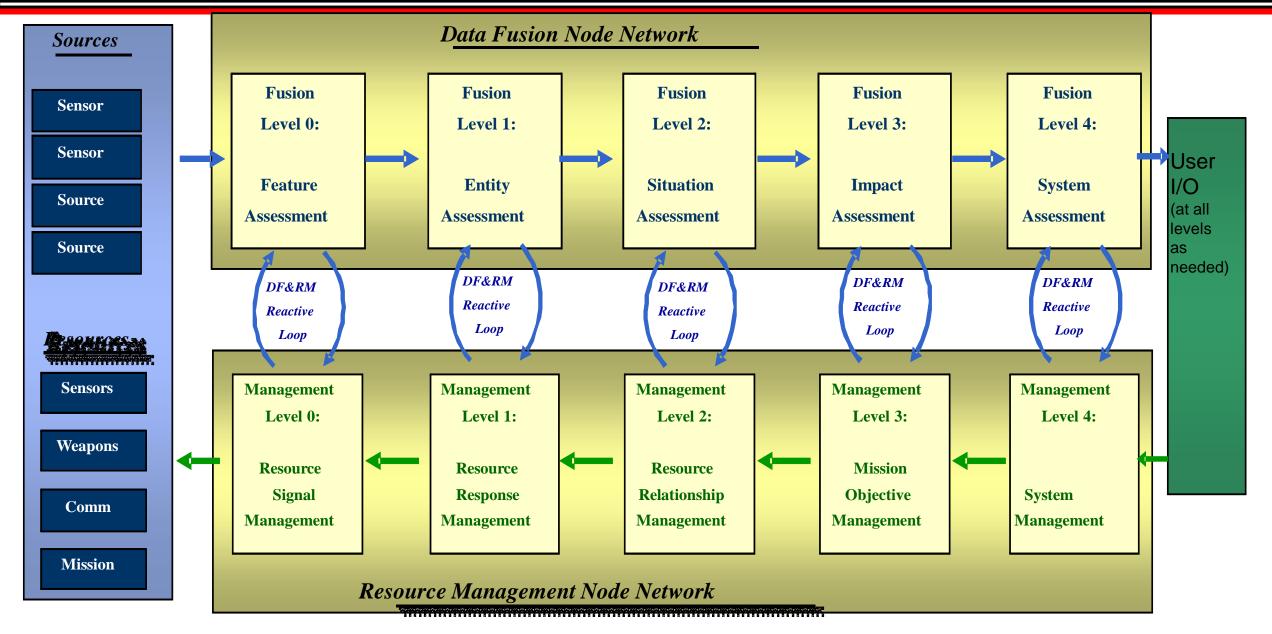
DF & RM Node Duality Facilitates Understanding of Alternatives & Reuse

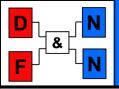


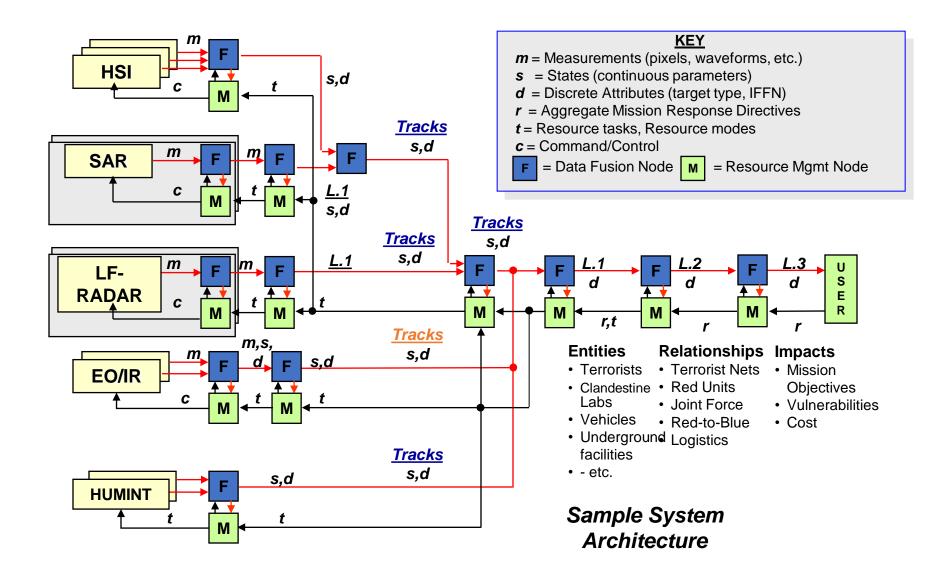


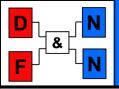


Sample Interlaced Network of DF&RM Dual Level Interactions

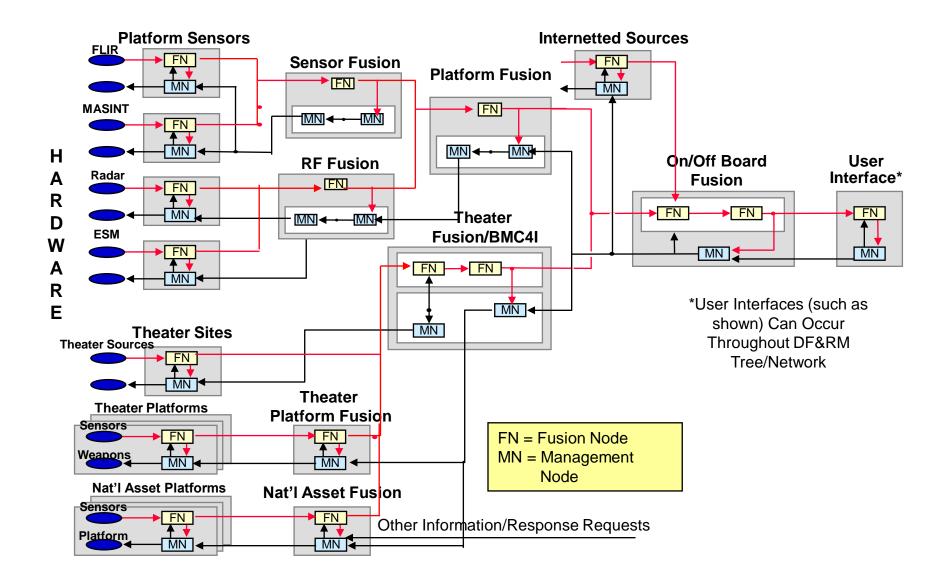


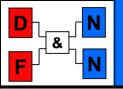




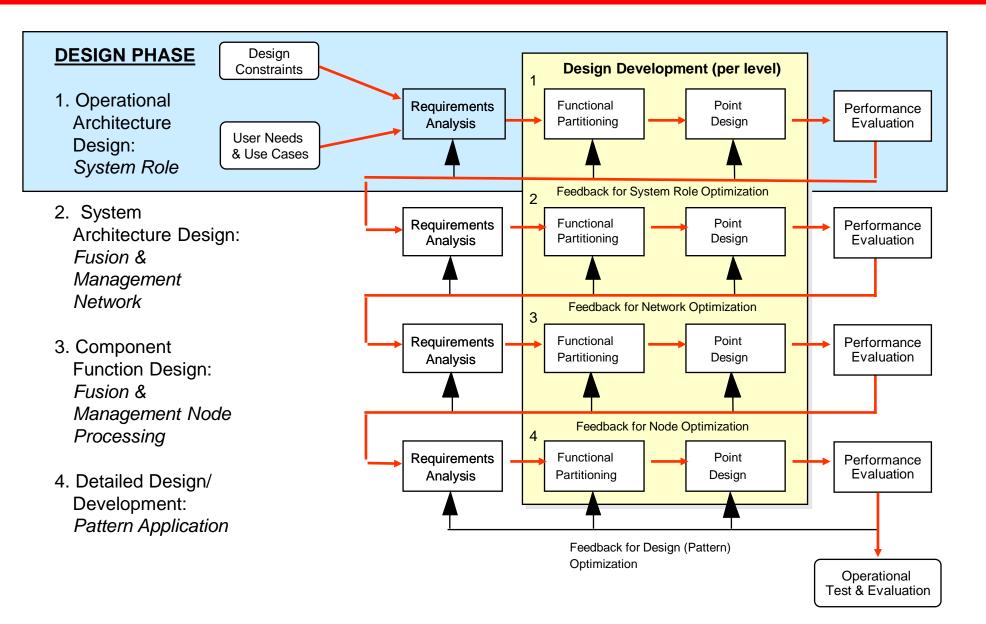


Sample Interlaced Tree of DF&RM Nodes





The DNN Architecture DF&RM System Engineering Process Includes Rapid Prototyping



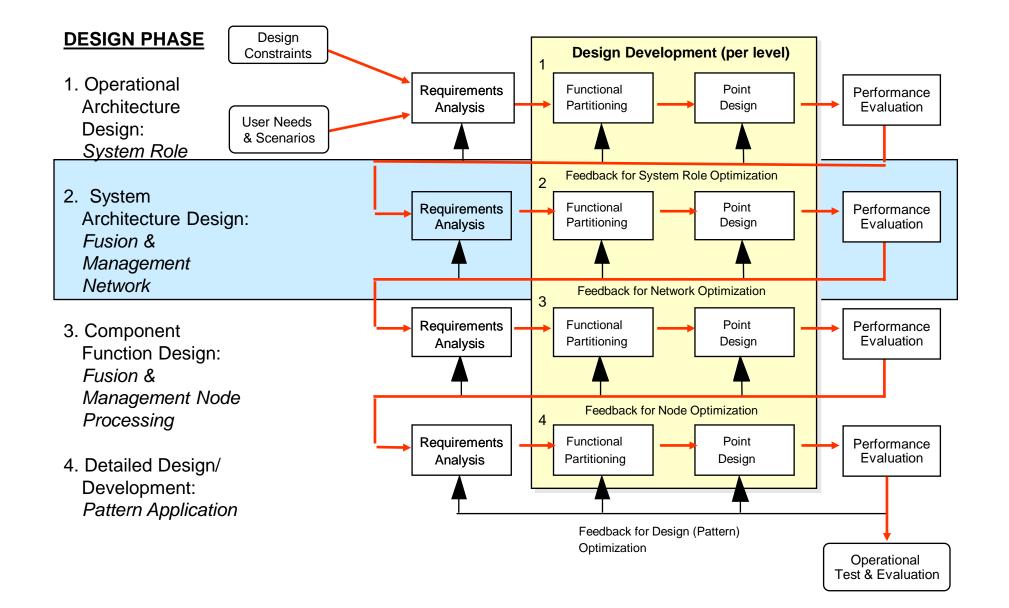
DF&RM Dual Node Network (DNN) Technical Architecture

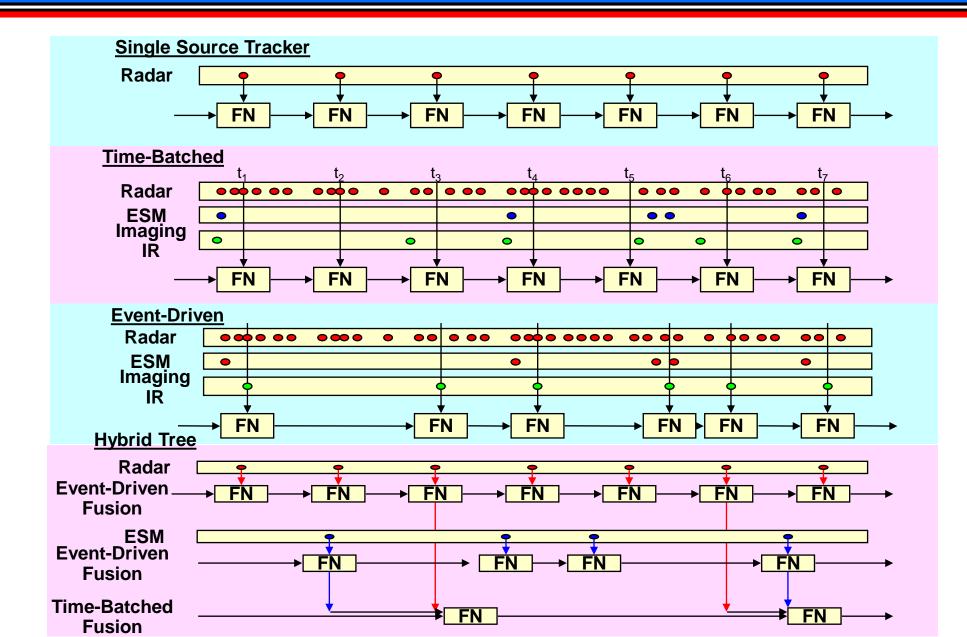
Distributed Data Fusion Node Networks

> Data Association Hypothesis Evaluation Alternatives

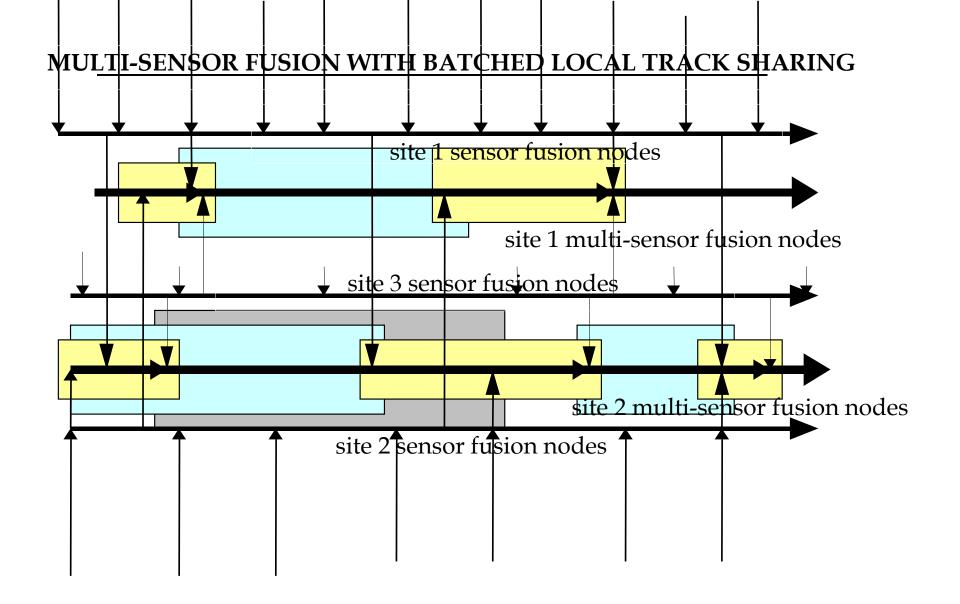
The DNN Architecture DF&RM System Engineering Process

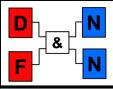
&





Global Track Reinitialization with Local Track Sharing

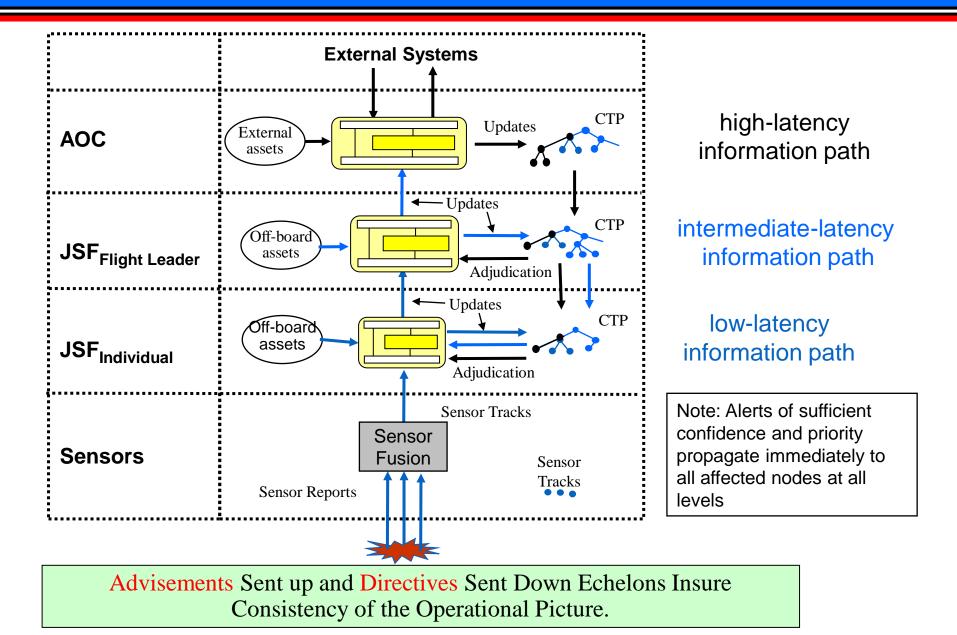




Complementarity of Five Distributed Tracking Fusion Networks

FUSION TREES		PERFORMANCE	DESCRIPTORS		
Multi-Sensor	Data	Track	Sensor	Track Error	Flexibility
Fusion with	Communic	Reinitializatio	Tracker	Correlations	Issues
	ated	n	Impacts		
Measurement	sensor	no	sensor track	none	highest
Sharing	measurem	reinitialization	tailoring at		bandwidth
	ents		global sites		comm
Sensor Node	local track	sensor filter	sensor filter	sensor filter	simultaneo
Track	state	reinitialization	modification	process	us comm
Reinitializati		after send	s needed	noise	output
on				correlations	
Tracklets	local track	no	only	inverse KF	For non-
From Tracks	state	reinitialization	standard KF	to remove	maneuveri
			updates	correlations	ng entities
Local Track	local track	global track	use tailored	process	Sending
Sharing	state (plus	reinitialization	sensor	noise &	reports
	reports)		trackers as is	misalignme	Increases
				nts correlate	BW
Globlal	global	no global filter	use tailored	correlations	ID with
Track	track state		sensor	reduce	pedigree
Sharing			trackers as is	accuracy	fused

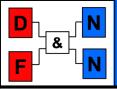
Fusion Updates CTP with New Data; Adjudication Maintains Consistency



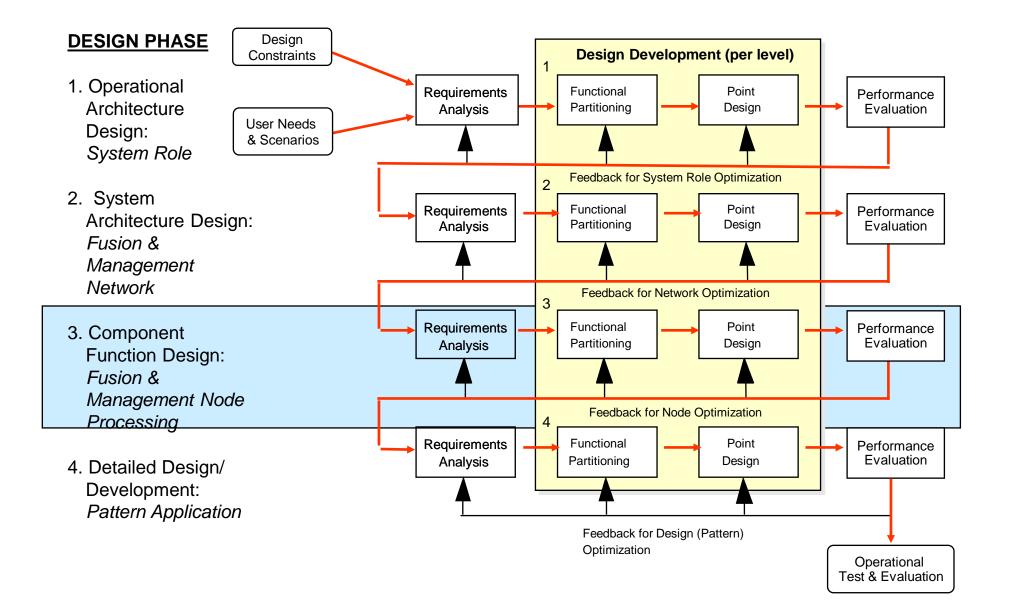
DF&RM Dual Node Network (DNN) Technical Architecture

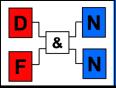
Distributed Data Fusion Node Networks

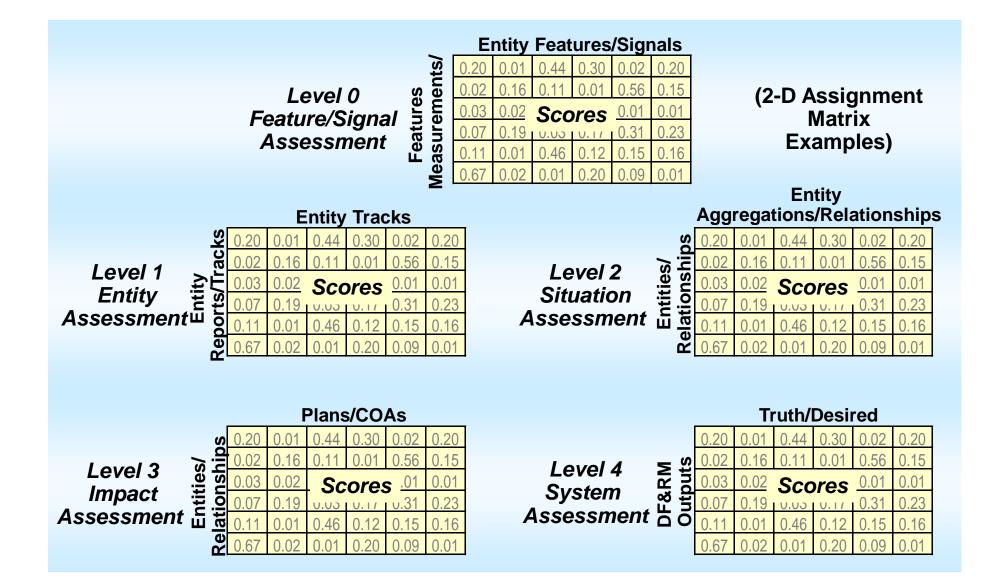
Data Association Hypothesis Evaluation Alternatives

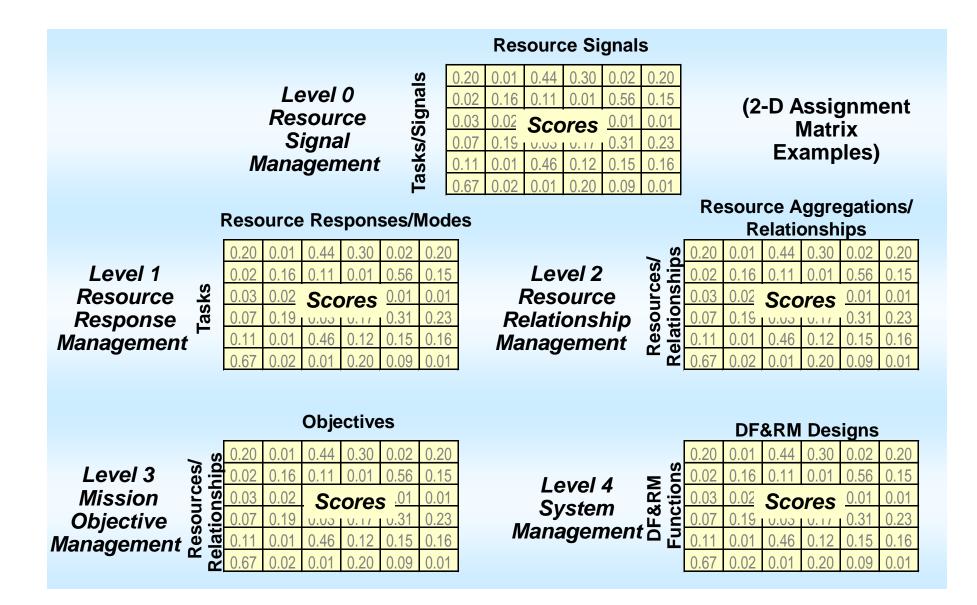


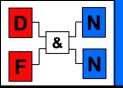
The DNN Architecture DF&RM System Engineering Process



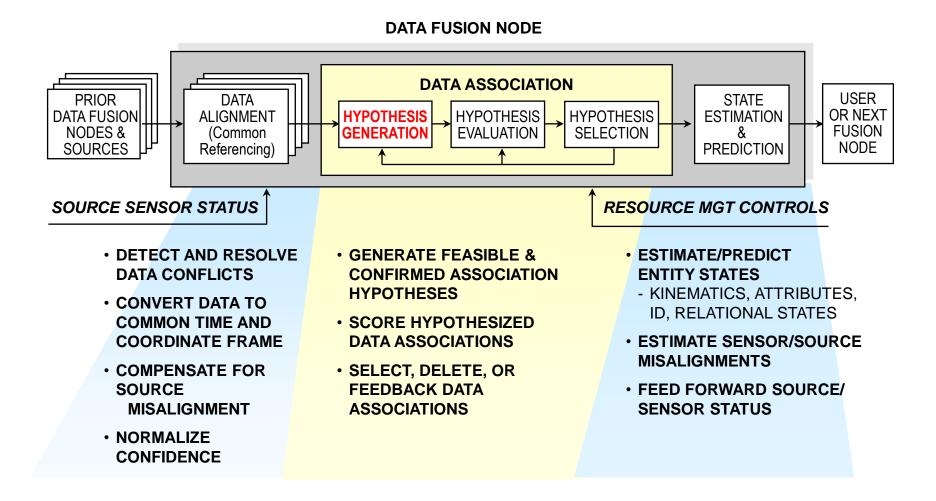


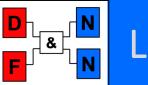


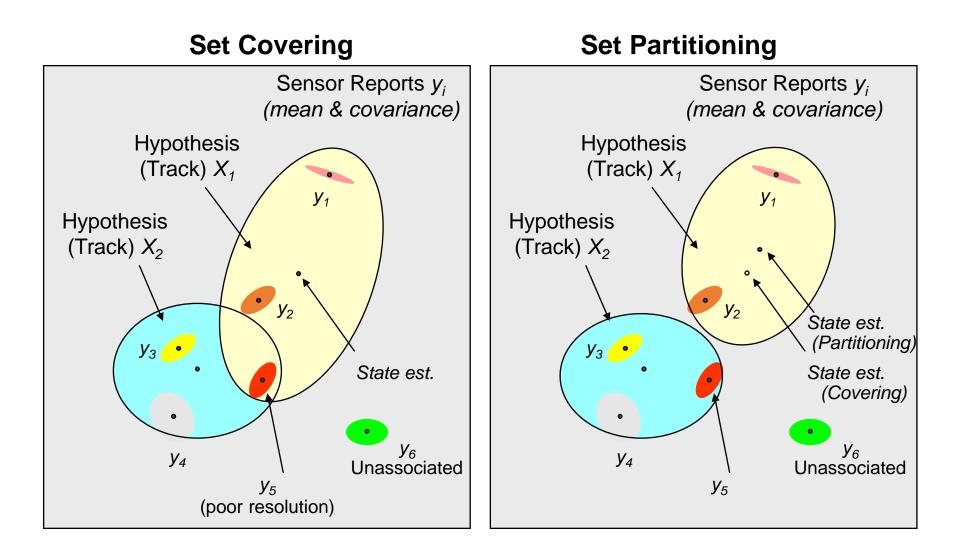


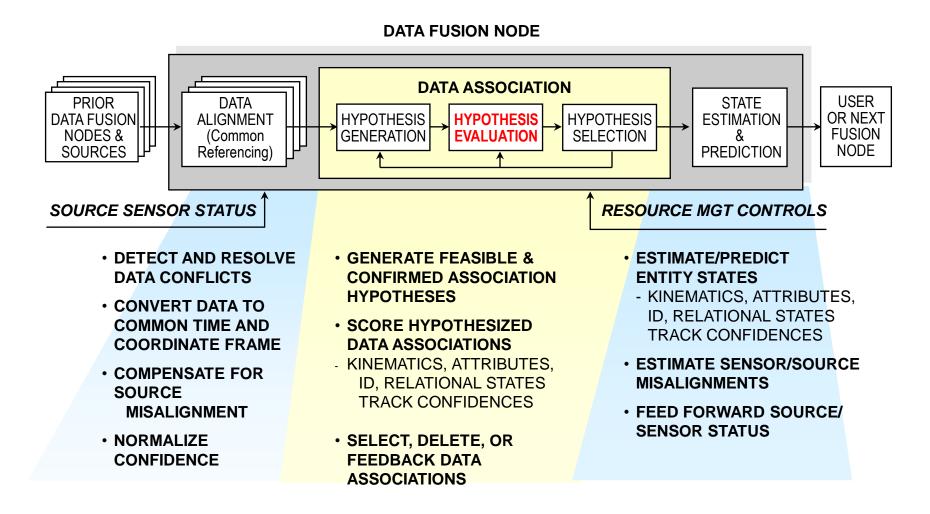


Data Association Is the Core of Data Fusion

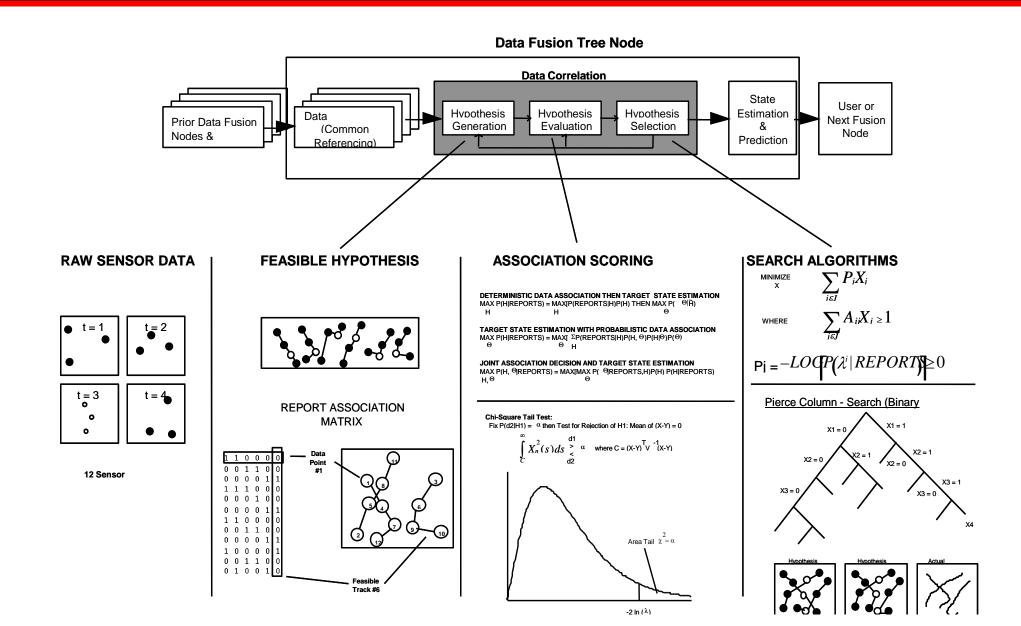






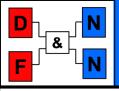


Processing Load Is Balanced Within Each Fusion Node Component



Applicability of Alternative Scoring Schemes (1 of 2)

- Probabilistic: Preferred if statistics known
 - > Chi-Square Distance
 - Doesn't require prior densities
 - Useful for comparing multi-dimensional Gaussian data
 - However, no natural way to incorporate attribute and a priori data
 - > Max Likelihood
 - Doesn't require unconditional prior densities, p(x)
 - Does require conditional priors, p(Z|x)
 - > Bayesian Maximum a Posteriori (MAP)
 - Naturally combines kinematics, attribute, and a priori data
 - Provides natural track association confidence measure
 - However, requires prior probability (e.g. kinematics and class) densities; difficult to specify

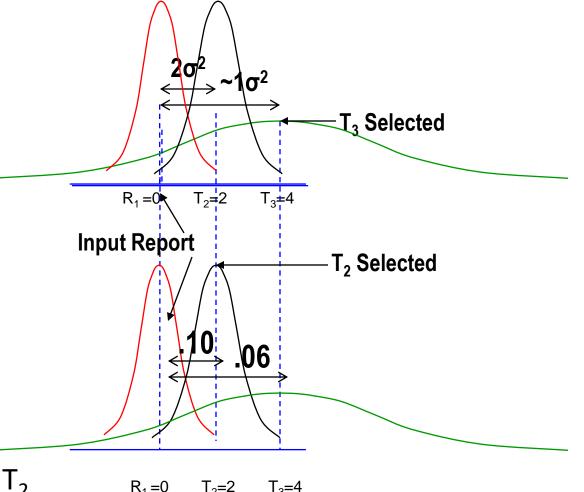


- Non-Probabilistic: Useful if high uncertainty in the uncertainty
 - > Evidential (Dempster-Shafer)
 - Non-statistical: User specifies evidence "mass" values (support and plausibility numbers)
 - Essentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple knowledge combination rules)
 - > Fuzzy Sets
 - User specifies membership functions to represent the uncertainty-in-the-uncertainty
 - User specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min) which are much easier compute than second-order Bayesian
 - More complex to develop, maintain, and extend
 - > Confidence Factors and Other ad hoc Methods
 - Explicit derivation of logical relationships
 - Generally ad hoc weightings to relate significance of factors
 - Can include information theoretic and utility weightings

MAP Scoring Correctly Balances Less Accurate Further Away Tracks

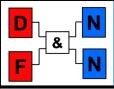
Chi-square (Mahalanobis) Scoring:

- $I^{t}V^{-1}I = [R_1 T_2]^2 / [\sigma_R^2 + \sigma_{T2}^2] = \frac{2^2}{[1+1]} = 2$
- $I^{t}V^{-1}I = [R_{1} T_{3}]^{2} / [\sigma_{R}^{2} + \sigma_{T3}^{2}] = 4^{2} / [1 + 16] = 16 / 17$
- R associated to 1 sigma away but further distance away less accurate T₃
- Max. *a Posteriori* (Bayesian):
 - $[2\pi V]^{-.5} e(-.5I^{t}V^{-1}I) = [6.28*2]^{-.5}$ $e(-.5[R_1-T_2]^2/[\sigma_R^2+\sigma_{T2}^2]) \sim .28 e^{-1} \sim .10$
 - $[2\pi V]^{-.5} e(-.5I^{t}V^{-1}I) = [6.28*17]^{-.5} e(-.5[R_1 10^{-1}I)]^{-.5} = [6.28*17]^{-.5} e(-.5[R_1 10^{-1$ $T_3^2/[\sigma_R^2 + \sigma_{T_3}^2]) \sim .097 e^{-.47} \sim .060$
 - R is associated to the closer more accurate T₂



 $T_3=4$

T₂=2



Deterministic Data Association then target estimation

 $MAX_{H} P(H|REPORTS) = MAX[P(REPORTS|H)P(H) THEN MAX_{H} P(\theta | H)]$ H

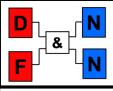
Target state estimation with probabilistic data association

 $\begin{array}{l} MAX \ P(\theta \mid REPORTS) = \ MAX[\ \sum P(REPORTS \mid H, \theta) P(H \mid \theta)] P(\theta) \\ \theta & H \end{array}$

Joint association decision and target state estimation

 $\begin{array}{l} MAX \ P(H, \theta \mid REPORTS) = MAX[MAX \ P(\theta \mid REPORTS, H)]P(H \mid REPORTS) \\ H, \theta & H & \theta \end{array}$

H is the association hypothesis and Theta is the track state.



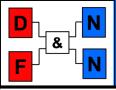
- The total scene hypothesis score is the product of the individual hypothesis scores for the 5 possible hypothesis types:
 - association hypotheses
 - pop-up (i.e., track initiation) hypotheses
 - input false alarm (FA) hypotheses
 - track propagation (missed coverage) hypotheses
 - drop track (false track) hypotheses
- Pd and Pfa use track association confidences and incorporate the entity birth and death statistics
- Track confidence estimates are needed to differentiate the 5 hypotheses types
- When the class tree uncertainty-in-the-uncertainty is high it is not used in scoring

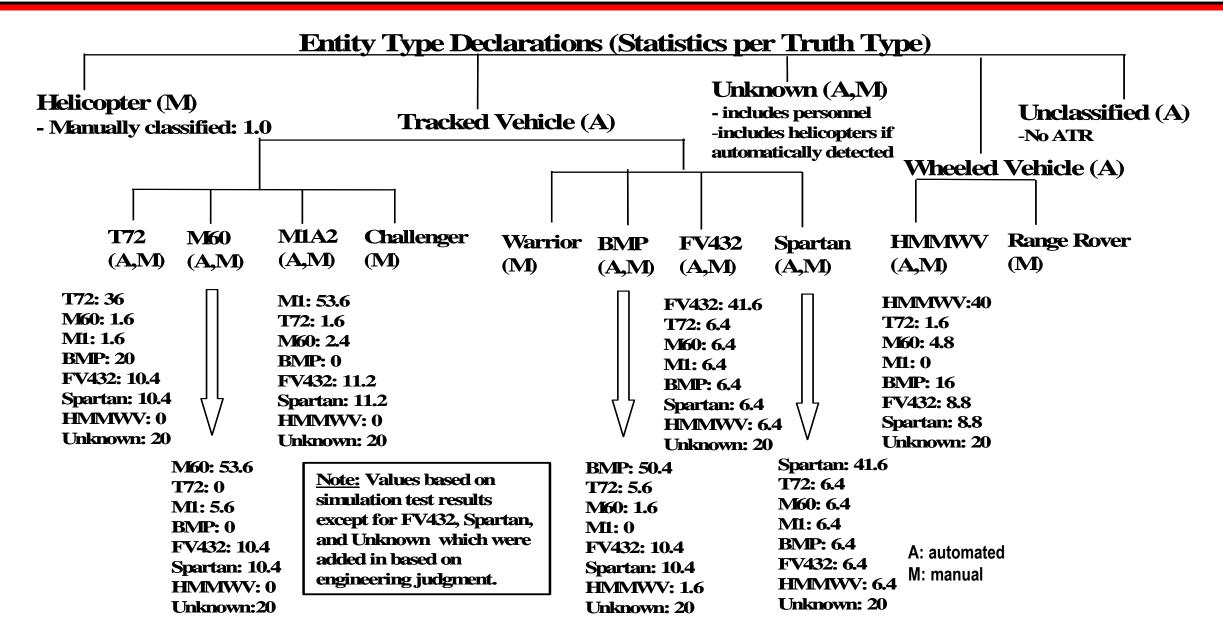
• Sources 1 & 2 have noncommensurate attributes if for an exhaustive set of disjoint of entity classes, K,

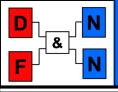
 $P(Z(S_1) | Z(S_2), Class K, Y(S_i), H) = P(Z(S_1) | Class K, Y(S_1), H)$

where,

- Z(S_i) is the set of measured attributes (i.e., all non kinematics measurements) from each source i,
- H is the association hypothesis between sources $S_1 \& S_2$,
- Y(S_i) are the measured kinematics from the two sources
- All source attributes not conditionally independent are treated as separately commensurate parameters
- For commensurate sources, feature differences are scored







The total scene hypothesis score is the product of scores for 5 types of S to T association hypotheses of kinematics, Y, attributes, Z, and entity class confidences, K:

1. Association Hypotheses

- $$\begin{split} & P(Y(S) \mid Y(T), H) \ P(Z(S), Z(T) \mid Y(S), Y(T), H) \ P(H) = \{ \mid V \mid ^{-1/2} \} \ exp[-1/2\{I^{T} V^{-1} I\}] \\ & \bullet \{ \Sigma_{K}[P(K \mid Z(T), Y(T), H) \ P(K \mid Z(S), Y(S), H) / P(K \mid Y(T), Y(S), H)] \} \ \bullet \ [1-P_{FA}(S)] \\ & [1-P_{FA}(T)] \ P_{D}(S) \ P_{D}(T) \end{split}$$
- 2. Pop-up (i.e., Track Initiation) Hypotheses

$$\begin{split} P(Y(S) \mid Y(T), H) \; P(Z(S), Z(T) \mid Y(S), Y(T), H) \; P(H) = \{ E(\mid V \mid ^{-1/2} \mid) \} \; exp[-1/2\{\mu\}] \bullet \\ [1-P_{FA}(S)] \; [1-P_{D}(T)] \; P_{D}(S) \end{split}$$

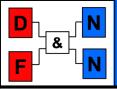
3. False Alarm (FA) Hypotheses

$$\begin{split} & P(Y(S) \mid Y(T), H) \; P(Z(S), Z(T) \mid Y(S), Y(T), H) \; P(H) = \{ \; E(\mid V \mid ^{-1/2} \;) \} \; exp[-1/2\{\mu\}] \bullet \\ & P_{FA}(S) \; P_{D}(S) \end{split}$$

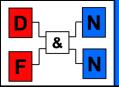
4. Propagation Hypotheses

 $P(Y(S) | Y(T),H) P(Z(S), Z(T) | Y(S), Y(T), H) P(H) = [1-P_{FA}(T)] [1-P_{D}(S)] P_{D}(T)$

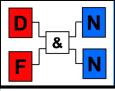
5. **Track Drop Hypotheses** $P(Y(S) | Y(T),H) P(Z(S), Z(T) | Y(S), Y(T), H) P(H) = P_{FA}(T) P_D(T)$



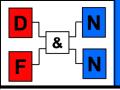
- Y(S) are the sensor report Gaussian kinematics with covariance R
- Y(T) are the track Gaussian kinematics with covariance P_k^+ ,
- H is one of 5 association hypothesis types, E is expectation fcn
- |V| is determinant of innovations covariance, $V = H [P_k^+] H^T + R$,
- μ is the mean of the chi-square statistic (i.e., { $I^T V^{-1} I$ })
- I is the innovations vector, I = Y(S) H Y(T),
- P(K) are the confidences of the disjoint entity class tree,
- Z(T) [Z(S)] are the parameters/attributes from the track [report],
- $P_D(S) [P_D(T)]$ is the sensor [track file] probability of detection
- $P_{FA}(S)[P_{FA}(T)]$ is the sensor [track file] probability of false alarm,



- $P(K|D) = P(D|K) P(K) / \Sigma_T(P(Truth T) P(D | Truth T) where$
- P(K|D) is the probability of the entity being of class K given the specified sensor declaration D that is computed for all the possible disjoint classes. These terms are inserted for the n P(K|Z(S),Y(S), H) sensor report disjoint classification type confidences.
- P(K) is the a priori probability of the entity being of class K
- P(D|K) is the probability that the declaration D is made given the entity is of class K from the declaration confusion matrix
- P(D |Truth T) is the probability of the specified declaration D given the entity is of truth type T from the declaration confusion matrix where T varies over the possible scenario truths
- P(Truth T) is the a priori probability of the truth in the scenario being of type T where T varies over the possible scenario truths

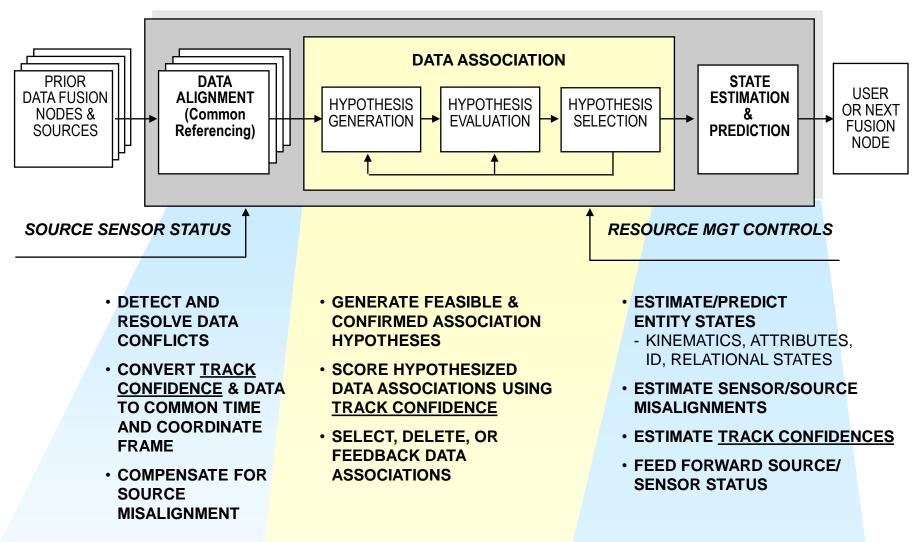


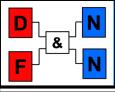
- Uses the separation point on the PDF as the kinematics score, so high uncertainty tracks do not overly attract reports as w/chi-square scoring
- Bayesian scoring and update of the classification uncertainties with pedigree of noncommensurates used for class error correlation compensation or separate noncommensurate class vectors
- Track confidence estimation provides rigorous basis for the scoring of the four non-association hypotheses
- Misalignment bias states & uncertainties added for scoring and to remove relative misalignments



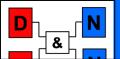
Track Confidence Is Updated Using Source Parameters & Association Results

DATA FUSION NODE



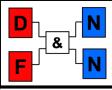


- Propagation of Probability for Entity Track in Consistent Operational Picture (COP) & False Track
- Track Confidence Contribution to Association Hypothesis Scoring
- Update of Probability of Entity Track in COP and False Track Confidences With Track Propagations and Pop Ups
- Update of COP Probability of False Track for Associated Tracks, Propagated Tracks, & Pop Ups



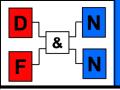
Hyp Eval Problem to Solution Space Mapping

SOLUTION SPACE		Probabilistic				Possibi-listic Logic/Symbolic			Neural		Unified							
PROBLEM SPACE	AdH	Lkl	Bay	NP	Chi	CEA	Inf	DS	Fuz	S/F	SD	ES	C-B	US	FF	Rec	RS	
INPUT DATA																•		
Identity/attributes		Y	Y		Ν												Y	
Kinematics		Y	Y		Y												Y	
Parameter attributes			Y	Y	Y												Y	<u>KEY</u>
• A priori sensor data		Ν	Y		N												Y	AdH Ad Hoc
Linguistic data	Y					Y		Y	Y		Y						Y	LkI Likelihood
Spatio-temporal										Y							Y	Bay Bayesian
High uncertainty								Y	Y								Y	NP Non-parametric
Unknown structure														Y	Y	Y		Chi Chi-Squared
Non-parametric data	Y			Y			Y		Y									CEA Conditioned Event
Partial data											Y							Algebra
Differing dimensions					Y													Inf Information Theoretic
Differing conditionals						Y												DS Dempster-Shafer
Error PDF known		Ν	Y	Y	N		Ν	N	N	Ν	Ν	N	N	Ν	N	N	Ν	Fuz Fuzzy Logic
SCORE OUTPUT																		S/F Scripts/ Frames
 Yes/no, pass-through 	Y																	SD Semantic Distance
Discrete score bins	Y									Y	Y	Y	Y	Y	Y	Y		ES Expert Systems
Numerical scores		Y	Y	Y	Y	Y	Y										Y	C-B Case-Based Reasoning
Multi scores per								Y									Y	US Unsupervised Learning
Confidence function									Y								Y	FF Feed-Forward
PERFORM MEAS			•						•			-			•			Rec Recurrent Supervised Learning
Low cost/complexity	Y	Y	Y	Y	Y	N	Ν	N	N	Ν	Ν	N	Y	Y	Y	Y	N	RS Random Set
Compute efficiency										Ν		N	Y	Y	Y	Y		
Score accuracy	Ν	Y	Y	Ν	Y	Y		Y	Y	Ν	Ν	N	Ν	Ν	N	N	Y	
User adaptability										Y		Y	Y	Y	Y	Y		
Training set required													Ν	Ν	Y	Y		
Self-coded/trained		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y		
Robustness to error													Y	Y	Y	Y		
 Result explanation 	Ν									Y	Y	Y	Y	Y	Y	Y		
 High processing Avail 	Ν		N	Ν		у	Y		N	Y		Y	Y	Y	Y	Y		



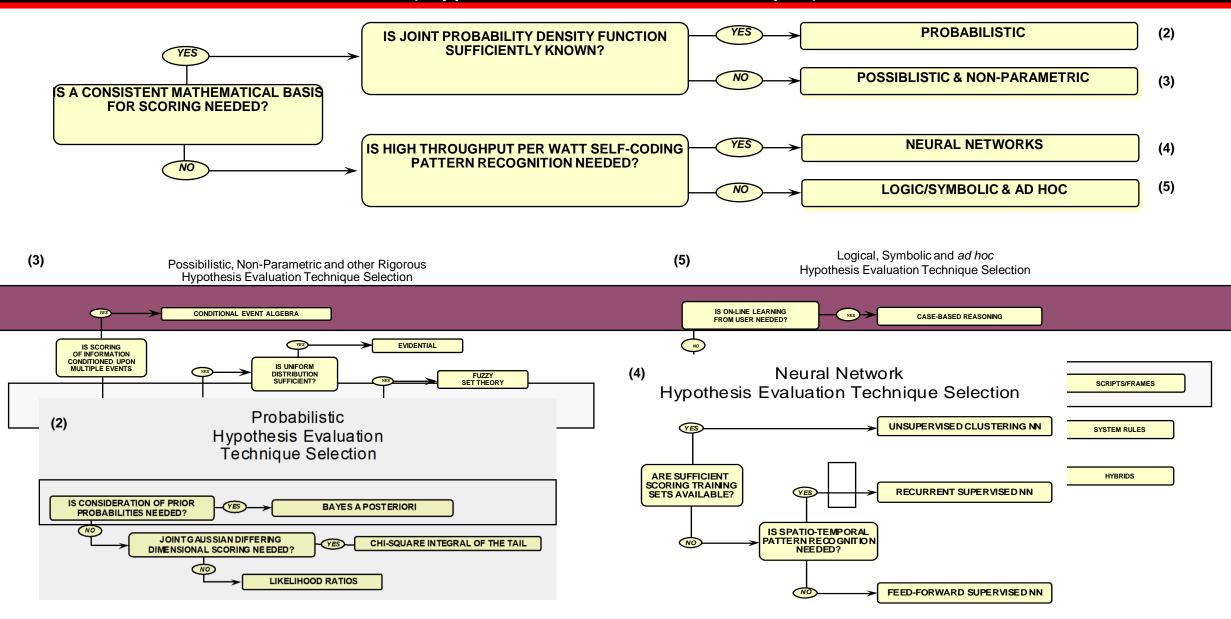
Alternative DF&RM Techniques Are Synergistic

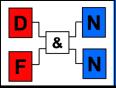
Methods	Approach	Event Representation	Problem Domain	Solution Development	Costs/Risks	Performance	Verification	Speed
Ad Hoc	analyst driven	table look-up	predefined fixed features	rule-of-thumb	simple not upgradable	approximate; brittle	all cases tested	fast table look-up
Probabilistic	algorithm driven	pointwise probability	rigorously defined features	analyst solves rigorously	upgradable SW	precise; extendable	alternative path tests	via path parallelization
Possibilistic	algorithm driven	uncertainty-in- the-uncertainty	feature uncertainties known	analyst solves approximation	upgradable; more complex	Broader app's; extendable	alternative path tests	via path parallelization
Logic/ Symbolic	rule driven	setwise degree of membership	expert described features	expert defines rules	rule compatibility/ scalability	gets close; user adaptable	rules explanation	via rule parallelization
Neural Networks	self- organized	firing level patterns	unknown feature relationships	data driven; user objectives	training breadth; HW scalability	approximate; non-linear interpolation	numerous training cases	massively parallel chips
Unified	algorithm & rule driven	normalized representation	combination s of the above	analyst solves hybrid	most complex	most breadth	alternative path tests	via approximation

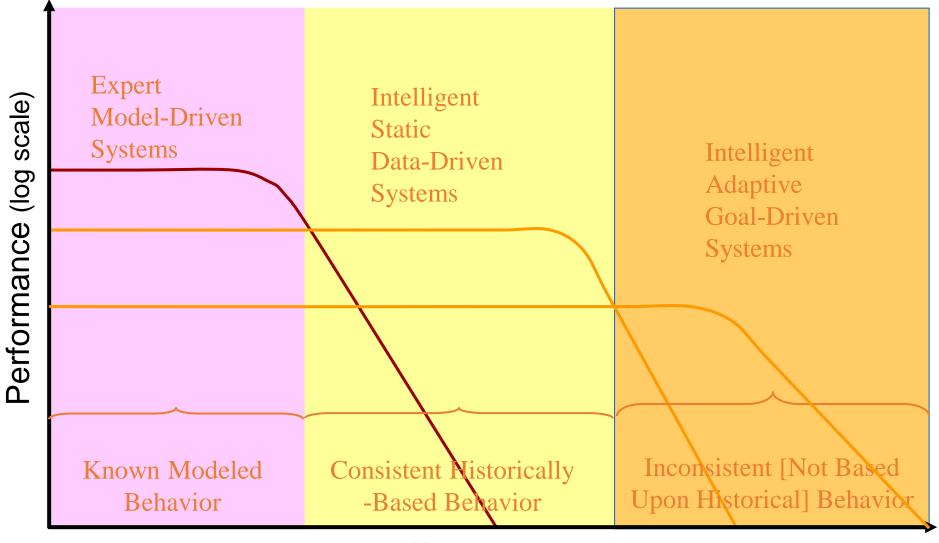


Decision Flow for Technique Selection

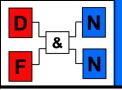
(Hypothesis Evaluation Example)





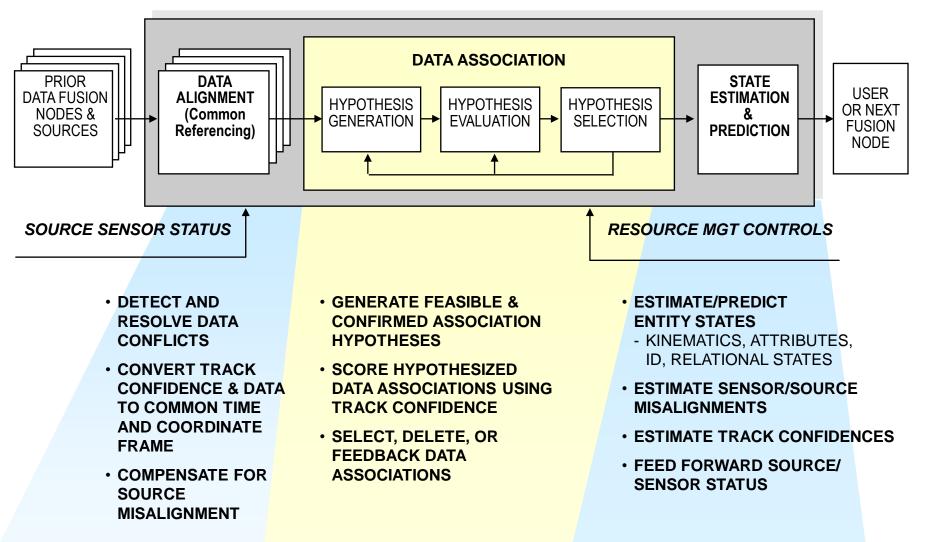


Problem Difficulty (log scale)



Hypothesis Selection Determines How Alternative Association World Views to Be Maintained

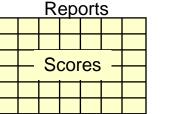
DATA FUSION NODE



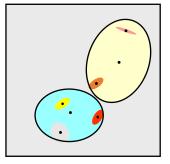
 Need to Search through Association Matrix to find best Global Hypothesis
 Reports

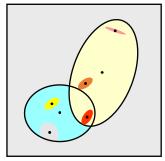
Tracks

- Association Matrix:
- Types of Global Hypotheses
 - Set Partitioning: no two tracks (local hypotheses) share a report
 - Set Covering: There may be shared reports
- N-D Approaches: Search All Scans by All Sources
 - Globally Optimal Solution
 - Computationally Demanding (NP-Hard: ≤ Exponential Run-Time)
- 2-D Approaches: Search only Current Scan
 - Locally Optimal Solution
 - Polynomial Run-Time



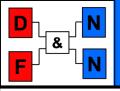
Set Partitioning





-	Cu	rrent Reports	No Observation					
	$-\ln[P(R_1,T_1 $	$-\ln[P(R_2,T_1 $	$-\ln[P(R_3,T_1 $	$-\ln P(H_2)$	inf			
Current Tracks	H)P(H)]	H)P(H)]	H)P(H)]					
	$-\ln[P(R_1,T_2 $	$-\ln[P(R_2,T_2)]$	$-\ln[P(R_3,T_2 $	inf	$-\ln P(H_2)$			
	H)P(H)]	H)P(H)]	H)P(H)]					
Track Initiation or FA	$-\ln P(H_1)$	inf	inf	0	0			
	inf	$-\ln P(H_1)$	inf	0	0			
	inf	inf	-lnP(H ₁)	0	0			

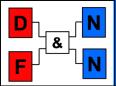
- "No Observation" columns added to denote the better hypothesis, H₂, of false or propagated tracks for unassociated tracks
- "No Association" rows added to denote the better hypothesis, H₁, of false alarm or initiated tracks for unassociated reports
- Zero's in lower right box discourage selection of non-association hypotheses



 $\begin{aligned} \mathsf{P}(\mathsf{class}\ \mathsf{C}|\ \mathsf{all}\ \mathsf{S}_{i}\ \mathsf{H}) &= \{ \Pi_{i}\ [\{\mathsf{P}(\mathsf{C}|\mathsf{S}_{i},\mathsf{H})/\mathsf{P}(\mathsf{C}|\mathsf{Y}(\mathsf{S}_{i}\ \mathsf{all}\ \mathsf{i}),\ \mathsf{H})\} \mathsf{P}(\mathsf{C}|\ \mathsf{Y}(\mathsf{S}_{i}\ \mathsf{for}\ \mathsf{all}\ \mathsf{i}),\ \mathsf{H})] \ \} / \ \Sigma_{\mathsf{K}}\ \{\Pi_{i}\ [\{\mathsf{P}(\mathsf{K}|\mathsf{S}_{i},\mathsf{H})/\mathsf{P}(\mathsf{K}|\ \mathsf{Y}(\mathsf{S}_{i}\ \mathsf{all}\ \mathsf{i}),\ \mathsf{H})\} \mathsf{P}(\mathsf{C}|\ \mathsf{Y}(\mathsf{S}_{i}\ \mathsf{for}\ \mathsf{all}\ \mathsf{i}),\ \mathsf{H})] \ \} \\ &= \mathsf{P}(\mathsf{K}|\ \mathsf{Y}(\mathsf{S}_{i}\ \mathsf{for}\ \mathsf{all}\ \mathsf{i}),\ \mathsf{H})] \end{aligned}$

if $P(C|H) \neq 0$ [= 0 if P(C|H)=0]

- C is the element of the fused entity class tree being updated,
- S_i for each source i is its measured data [both kinematic and attribute]
- P(C|Y(S_i), H) is the probability of an entity of type C given only kinematics data from source i & H, the association hypothesis,
- K is the index of type disjoint tree classes [summed over for normalization],
- P(C|S_i,H) are the entity class tree confidences based upon all measurements from each source i



Sample Interlaced Network of DF&RM Dual Level Interactions

