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Briefing Objectives

ÅProvide an understanding of the roles for Data Fusion & Resource 

Management (DF&RM)

ÅDescribe how the Data Fusion heritage can be used to άƧǳƳǇ-ǎǘŀǊǘέdual 

Resource Management solutions 

ÅDescribe DF&RM Dual Node Network (DNN) Technical Architecture 

ÅProvide Problem-to-Solution Mappings for Data Association 

ÅProvide Baseline Max A Posteriori (MAP) Data Association Hypothesis 

Evaluation Equations



AGENDA

×DF&RM Dual Node Network (DNN) Technical Architecture 

üDistributed Data Fusion Node Networks

üData Association Hypothesis Evaluation Alternatives



Cǳǎƛƻƴ ϧ aŀƴŀƎŜƳŜƴǘ [ƛŜ ƛƴ ǘƘŜ DŀǇ .ŜǘǿŜŜƴ άhōǎŜǊǾŜέ ŀƴŘ ά!Ŏǘέ   

ÅData Fusion is the process of combining data/information to 

estimate or predict the state of some aspect of the world. 

ÅResource Management is the process of planning/ 

controlling response capabilities to meet mission objectives
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Sensor Fusion Exploits Sensor Commonalities and Differences

Data Association Uses Overlapping Sensor Capabilities 
so that State Estimation Can Exploit their Synergies
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Resource  Management Exploits Sensor Commonalities & Differences
(Sensor Management Example)

Sensor Task Planning Uses Overlapping Sensor 
Capabilities so that Control Can Exploit their Synergies
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Using a Fusion & Management Architecture Will Stop One-of-a-
Kind Software Developments

¶Architectures are frequently used mechanisms to address a broad range of 
common requirements to achieve interoperability and affordability
objectives

¶An architecture (IEEE definition) is a structure of  components, their 
relationships, and the principles and guidelinesgoverning their design and 
evolution over time

¶An architecture should:
Å Identify a focused purpose with sufficient breadth to achieve affordability objectives

Å Facilitate user understanding/communication

Å Permit comparison, integration, and interoperability

Å Promote expandability, modularity, and reusability

Å Achieve most useful results with least cost of development



Role for DF&RM DNN Technical Architecture Within the 
ά5ƻ5 !ǊŎƘƛǘŜŎǘǳǊŜ CǊŀƳŜǿƻǊƪέ

ÅThe operational architecture provides the ñwhat and whoò operational needs

ÅThe technical architecture provides ñproblem-to-solution spaceò guidance

ÅThe systems architecture defines the ñhowò to build the operational system 



DF&RM DNN Technical Architecture Applies at Application 
Layer
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Data Mining Provides DF&RM Models 

üData Mining discovers and models some as aspect of data input to each fusion level

üData Fusion combines data to estimate/predict the desired state at each fusion level 
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Fusion Network Selected to Balance Performance & Complexity
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DF&RM Trees Divide & Conquer the Problem

ResourcesResources
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DF & RM Node Duality Facilitates
Understanding of Alternatives & Reuse
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Sample Interlaced Network of DF&RM Dual Level Interactions 
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Sample DF&RM Node Network for Battlefield Awareness
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Sample Interlaced Tree of DF&RM Nodes
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The DNN Architecture DF&RM System Engineering Process 
Includes Rapid Prototyping

Operational 
Test & Evaluation
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The DNN Architecture DF&RM System Engineering Process

Operational 
Test & Evaluation

DESIGN PHASE

1. Operational 

Architecture

Design:  

System Role

2.  System 

Architecture Design: 

Fusion & 

Management 

Network

3. Component 

Function Design: 

Fusion & 

Management Node  

Processing

4. Detailed Design/ 

Development: 

Pattern Application

Functional

Partitioning

Point

Design

Functional

Partitioning

Point

Design

Functional

Partitioning

Point

Design

Functional

Partitioning

Point

Design

Performance
Evaluation

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Requirements

Analysis

Feedback for System Role Optimization

Feedback for Network Optimization

Feedback for Node Optimization

Feedback for Design (Pattern)

Optimization

1

2

3

4

Design

Constraints

User Needs 

& Scenarios

Performance
Evaluation

Performance
Evaluation

Performance
Evaluation

Design Development (per level)



Fusion Node Network Examples
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Global Track Reinitialization with Local Track Sharing

site 2  multi -sensor fusion nodes

site 2 sensor fusion nodes
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site 3 sensor fusion nodes

MULTI -SENSOR FUSION WITH BATCHED LOCAL TRACK SHARING
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Complementarity of Five Distributed Tracking Fusion 
Networks
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The DNN Architecture DF&RM System Engineering Process
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Data Association Problems Occur at All Fusion Levels
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Resource Management Has Dual Response Planning Problems at All Levels
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Data Association Is the Core of Data Fusion 
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Level 1 Entity Data Association Is a Labeled Set Covering Problem
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(mean & covariance)

Hypothesis 

(Track) X1

y1

y5

(poor resolution)

y4

y2

y3

Set Covering Set Partitioning

State est. 
(Partitioning)

State est. 
(Covering)

y6

Unassociated
y6

Unassociated

State est. 



Hypothesis Evaluation Is the Core of Data Association 

ÅDETECT AND RESOLVE 

DATA CONFLICTS

ÅCONVERT DATA TO 

COMMON TIME AND 

COORDINATE FRAME

ÅCOMPENSATE FOR 

SOURCE

MISALIGNMENT

ÅNORMALIZE 

CONFIDENCE

ÅESTIMATE/PREDICT 

ENTITY STATES

- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

TRACK CONFIDENCES

ÅESTIMATE SENSOR/SOURCE 

MISALIGNMENTS

ÅFEED FORWARD SOURCE/ 

SENSOR STATUS

ÅGENERATE FEASIBLE & 

CONFIRMED ASSOCIATION 

HYPOTHESES

ÅSCORE HYPOTHESIZED 

DATA ASSOCIATIONS

- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

TRACK CONFIDENCES

ÅSELECT, DELETE, OR 

FEEDBACK DATA 

ASSOCIATIONS

USER
OR NEXT
FUSION
NODE

STATE
ESTIMATION

& 
PREDICTION

DATA ASSOCIATION

DATA FUSION NODE

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
ALIGNMENT

(Common
Referencing)

PRIOR
DATA FUSION

NODES &
SOURCES

RESOURCE MGT CONTROLSSOURCE SENSOR STATUS



Processing Load Is Balanced Within Each Fusion Node Component 
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Applicability of Alternative Scoring Schemes (1 of 2)

ÅProbabilistic:  Preferred if statistics known

> Chi-Square Distance

ïDoesnôt require prior densities

ïUseful for comparing multi-dimensional Gaussian data

ïHowever, no natural way to incorporate attribute and a priori data

> Max Likelihood

ïDoesnôt require unconditional prior densities, p(x)

ïDoes require conditional priors, p(Z|x)

> Bayesian Maximum a Posteriori (MAP)

ïNaturally combines kinematics, attribute, and a priori data

ïProvides natural track association confidence measure

ïHowever, requires prior probability (e.g. kinematics and class) densities; difficult to specify



Applicability of Alternative Scoring Schemes (2 of 2)

ÅNon-Probabilistic:  Useful if high uncertainty in the uncertainty

> Evidential (Dempster-Shafer)

ïNon-statistical:  User specifies evidence ñmassò values (support and plausibility numbers) 

ïEssentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple knowledge combination 
rules) 

> Fuzzy Sets

ïUser specifies membership functions to represent the uncertainty-in-the-uncertainty 

ïUser specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min) which are much easier 
compute than second-order Bayesian 

ïMore complex to develop, maintain, and extend

> Confidence Factors and Other ad hoc Methods

ïExplicit derivation of logical relationships

ïGenerally ad hoc weightings to relate significance of factors

ïCan include information theoretic and utility weightings



ÅChi-square (Mahalanobis) Scoring:

ÅItV-1I=[R1-T2]
2κώˋR

2ҌT̀2
2] = 22/[1+1]=2

ÅItV-1I=[R1-T3]
2κώˋR

2ҌT̀3
2]=42/[1+16]=16/17

ÅR associated to 1 sigma away but further 
distance away less accurate T3

ÅMax. a Posteriori(Bayesian):

Åώнˉ±ϐ-.5 e(-.5ItV-1I) =[6.28*2]-.5

e(-.5[R1-T2]
2κώˋR

2ҌT̀2
2]) ~ .28 e-1 ~ .10

Åώнˉ±ϐ-.5 e(-.5ItV-1I) =[6.28*17]-.5 e(-.5[R1-
T3]

2κώˋR
2ҌT̀3

2]) ~ .097 e-.47 ~ .060

ÅR is associated to the closer more accurate T2

MAP Scoring Correctly Balances Less Accurate Further Away Tracks

R1 =0 T2=2 T3=4

T3 Selected

R1 =0 T2=2 T3=4

2Ű2

~1Ű2

.10 .06

T2 Selected
Input Report



Alternative MAP Association Scoring

Å
Deterministic Data Association then target estimation

MAX P H REPORTS MAX P REPORTS H P H THEN MAX P H
H H

( | ) [ ( | ) ( ) ( | )
^

= q
q

Å

[ ]MAX P REPORTS MAX P REPORTS H P H P

H

( | ) ( | , ) ( | ) ( )q q q q
q q

= ä

Å

[ ]MAX P H REPORTS MAX MAX P REPORTS H P H REPORTS

H H

( , | ) ( | , ) ( | )

,

q q

q q

=

H is the association hypothesis and Theta is the track state.

Target state estimation with probabilistic data association

Joint association decision and target state estimation



ÅThe total scene hypothesis score is the product of the individual hypothesis 

scores for the 5 possible hypothesis types: 
Åassociation hypotheses

Åpop-up (i.e., track initiation) hypotheses

Åinput false alarm (FA) hypotheses

Åtrack propagation (missed coverage) hypotheses

Ådrop track (false track) hypotheses

ÅPd and Pfa use track association confidences and incorporate the entity birth and 

death statistics 

ÅTrack confidence estimates are needed to differentiate the 5 hypotheses types

ÅWhen the class tree uncertainty-in-the-uncertainty is high it is not used in scoring

Max A Posteriori (MAP) Hypothesis Scoring



Source Noncommensurate Attributes Scored Using Entity Class Tree

¶Sources 1 & 2 have noncommensurateattributes if for an exhaustive set of 

disjoint of entity classes, K,

P(Z(S1) | Z(S2), Class K,Y(Si ), H) = P(Z(S1) | Class K,Y(S1 ), H)

where, 

¶Z(Si) is the set of measured attributes (i.e., all non kinematics measurements) from each 

source i,

¶H is the association hypothesis between sources S1 & S2,

¶Y(Si) are the measured kinematics from the two sources 

¶All source attributes not conditionally independent are treated as separately 

commensurate parameters

ÅFor commensurate sources, feature differences are scored



Sample Hierarchical Disjoint Entity Class Taxonomy 

 

T72

(A,M)

M60

(A,M)
BMP

(A,M)

Helicopter (M)
- Manually classified: 1.0

Unknown (A,M)
- includes personnel 

-includes helicopters if 

automatically detected

FV432

(A,M)

Spartan

(A,M)

HMMWV

(A,M)

M1A2

(A,M)

Challenger

(M)
Warrior

(M)

Range Rover

(M)

BMP: 50.4

T72: 5.6

M60: 1.6

M1: 0

FV432: 10.4

Spartan: 10.4

HMMWV: 1.6

Unknown: 20

T72: 36

M60: 1.6

M1: 1.6

BMP: 20

FV432: 10.4

Spartan: 10.4

HMMWV: 0

Unknown: 20

M60: 53.6

T72: 0

M1: 5.6

BMP: 0

FV432: 10.4

Spartan: 10.4

HMMWV: 0

Unknown:20

M1: 53.6

T72: 1.6

M60: 2.4

BMP: 0

FV432: 11.2

Spartan: 11.2

HMMWV: 0

Unknown: 20

FV432: 41.6

T72: 6.4

M60: 6.4

M1: 6.4

BMP: 6.4 

Spartan: 6.4 

HMMWV: 6.4

Unknown: 20 

Spartan: 41.6

T72: 6.4

M60: 6.4

M1: 6.4

BMP: 6.4

FV432: 6.4

HMMWV: 6.4

Unknown: 20

HMMWV:40 

T72: 1.6

M60: 4.8

M1: 0

BMP: 16

FV432: 8.8

Spartan: 8.8

Unknown: 20

Note:Values based on 

simulation test results 

except for FV432, Spartan, 

and Unknown  which were 

added in based on 

engineering judgment.   

Tracked Vehicle (A) 

Wheeled Vehicle (A) 

Unclassified (A)
-No ATR

Entity Type Declarations (Statistics per Truth Type)

T72

(A,M)

M60

(A,M)
BMP

(A,M)

Helicopter (M)
- Manually classified: 1.0

Unknown (A,M)
- includes personnel 

-includes helicopters if 

automatically detected

FV432

(A,M)

Spartan

(A,M)

HMMWV

(A,M)

M1A2

(A,M)

Challenger

(M)
Warrior

(M)

Range Rover

(M)

BMP: 50.4

T72: 5.6

M60: 1.6

M1: 0

FV432: 10.4

Spartan: 10.4

HMMWV: 1.6

Unknown: 20

T72: 36

M60: 1.6

M1: 1.6

BMP: 20

FV432: 10.4

Spartan: 10.4

HMMWV: 0

Unknown: 20

M60: 53.6

T72: 0

M1: 5.6

BMP: 0

FV432: 10.4

Spartan: 10.4

HMMWV: 0

Unknown:20

M1: 53.6

T72: 1.6

M60: 2.4

BMP: 0

FV432: 11.2

Spartan: 11.2

HMMWV: 0

Unknown: 20

FV432: 41.6

T72: 6.4

M60: 6.4

M1: 6.4

BMP: 6.4 

Spartan: 6.4 

HMMWV: 6.4

Unknown: 20 

Spartan: 41.6

T72: 6.4

M60: 6.4

M1: 6.4

BMP: 6.4

FV432: 6.4

HMMWV: 6.4

Unknown: 20

HMMWV:40 

T72: 1.6

M60: 4.8

M1: 0

BMP: 16

FV432: 8.8

Spartan: 8.8

Unknown: 20

Note:Values based on 

simulation test results 

except for FV432, Spartan, 

and Unknown  which were 

added in based on 

engineering judgment.   

Tracked Vehicle (A) 

Wheeled Vehicle (A) 

Unclassified (A)
-No ATR

Entity Type Declarations (Statistics per Truth Type)

A: automated

M: manual



Max a Posteriori Association Hypothesis Scoring 

The total scene hypothesis score is the product of scores for 5 types of S to T association 

hypotheses of kinematics, Y, attributes, Z, and entity class confidences, K: 

1. Association Hypotheses  

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {|V| -1/2 } exp[-1/2{I T V-1 I  }] 

¶ {SK[P(K|Z(T),Y(T), H) P(K|Z(S),Y(S), H)/P(K|Y(T),Y(S), H)]} ¶ [1-PFA (S)] 
[1- PFA(T)] PD (S) PD (T)   

2. Pop-up (i.e., Track Initiation) Hypotheses 

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = {E(|V| -1/2  )} exp[-1/2{m}] ¶ 
[1-PFA (S)] [1- PD(T)] PD (S)  

3. False Alarm (FA) Hypotheses  

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = { E(|V| -1/2  )} exp[-1/2{m}] ¶  
PFA (S) PD (S)  

4. Propagation Hypotheses  

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) = [1 -PFA (T)] [1- PD(S)] PD (T)  
5. Track Drop Hypotheses  

P(Y(S)|Y(T),H) P(Z(S), Z(T)|Y(S), Y(T), H) P(H) =  P FA (T) PD (T)  
 
 



Scoring Nomenclature

¶ Y(S) are the sensor report Gaussian kinematics with covariance R 

¶ Y(T) are the track Gaussian kinematics with covariance P +
k , 

¶ H is one of 5 association hypothesis types, E is expectation fcn

¶ |V| is determinant of innovations covariance, V =  H [P +
k] H

T + R,

¶ mis the mean of the chi-square statistic (i.e.,  {IT V-1 I }) 

¶ I is the innovations vector, I = Y(S) - H Y(T),

¶ P(K) are the confidences of the disjoint entity class tree,

¶ Z(T) [Z(S)] are the parameters/attributes from the track [report],

¶ PD(S) [PD(T)] is the sensor [track file] probability of detection 

¶ PFA (S) [PFA (T)] is the sensor [track file] probability of false alarm,



Approximate Class Confidence Generation from Declarations

ÅtόYμ5ύ Ґ tό5μYύ tόYύ κ ʅT(P(Truth T) P(D |Truth T) where

ÅP(K|D) is the probability of the entity being of class K given the specified sensor declaration Dthat is computed 

for all the possible disjoint classes. These terms are inserted for the n P(K|Z(S),Y(S), H) sensor report disjoint 

classification type confidences.

ÅP(K) is the a priori probability of the entity being of class K

ÅP(D|K) is the probability that the declaration D is made given the entity is of class K from the declaration 

confusion matrix

ÅP(D |Truth T) is the probability of the specified declaration D given the entity is of truth type T from the 

declaration confusion matrix where T varies over the possible scenario truths

ÅP(Truth T) is the a priori probability of the truth in the scenario being of type T where T varies over the possible 

scenario truths



MAP Scoring Uses Kinematics, ID, Track Confidence & Pedigree 
Information 

ÅUses the separation point on the PDF as the kinematics score, so 
high uncertainty tracks do not overly attract reports as w/chi-square 
scoring

ÅBayesian scoring and update of the classification uncertainties with 
pedigree of noncommensurates used for class error correlation 
compensation or separate noncommensurate class vectors 

ÅTrack confidence estimation provides rigorous basis for the scoring of 
the four non-association hypotheses 

ÅMisalignmentbias states & uncertainties added for scoring and to 
remove relative misalignments



Track Confidence Is Updated Using Source Parameters & 
Association Results

ÅDETECT AND 

RESOLVE DATA 

CONFLICTS

ÅCONVERT TRACK 

CONFIDENCE & DATA 

TO COMMON TIME 

AND COORDINATE 

FRAME

ÅCOMPENSATE FOR 

SOURCE

MISALIGNMENT

ÅESTIMATE/PREDICT 

ENTITY STATES

- KINEMATICS, ATTRIBUTES,

ID, RELATIONAL STATES

ÅESTIMATE SENSOR/SOURCE 

MISALIGNMENTS

ÅESTIMATE TRACK CONFIDENCES

ÅFEED FORWARD SOURCE/ 

SENSOR STATUS

ÅGENERATE FEASIBLE & 

CONFIRMED ASSOCIATION 

HYPOTHESES

ÅSCORE HYPOTHESIZED 

DATA ASSOCIATIONS USING 

TRACK CONFIDENCE

ÅSELECT, DELETE, OR 

FEEDBACK DATA 

ASSOCIATIONS

USER
OR NEXT
FUSION
NODE

STATE
ESTIMATION

& 
PREDICTION

DATA ASSOCIATION

DATA FUSION NODE

HYPOTHESIS
EVALUATION

HYPOTHESIS
GENERATION

HYPOTHESIS
SELECTION

DATA
ALIGNMENT
(Common

Referencing)

PRIOR
DATA FUSION

NODES &
SOURCES

RESOURCE MGT CONTROLSSOURCE SENSOR STATUS



Track Confidences Needed for MAP: Bayesian Equations for 
COP Track Confidence Have Been Derived

ÅPropagation of Probability for Entity Track in Consistent Operational 

Picture (COP) & False Track 

ÅTrack Confidence Contribution to Association Hypothesis Scoring

ÅUpdate of Probability of Entity Track in COP and False Track 

Confidences With Track Propagations and Pop Ups

ÅUpdate of COP Probability of False Track for Associated Tracks, 

Propagated Tracks, & Pop Ups



HypEval Problem to Solution Space Mapping

UnifiedNeuralLogic/SymbolicPossibi-listicProbabilisticSOLUTION SPACE
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AdH Ad Hoc

Lkl Likelihood

Bay Bayesian

NP Non-parametric

Chi Chi-Squared
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S/F Scripts/ Frames

SD Semantic Distance

ES Expert Systems
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RS Random Set



Alternative DF&RM Techniques Are Synergistic 

Methods Approach Event
Representation

Problem
Domain

Solution
Development

Costs/Risks Performance Verification Speed

Ad Hoc analyst

driven

table look-up predefined

fixed

features

rule-of-thumb simple not

upgradable

approximate;

brittle

all cases

tested

fast table look-up

Probabilistic algorithm

driven

pointwise

probability

rigorously

defined

features

analyst solves

rigorously

upgradable

SW

precise;

extendable

alternative path

tests

via path

parallelization

Possibilistic algorithm

driven

uncertainty-in-

the-uncertainty

feature

uncertainties

known

analyst solves

approximation

upgradable;

more

complex

Broader appôs;

extendable

alternative path

tests

via path

parallelization

Logic/

Symbolic

rule drivensetwise degree

of membership

expert

described

features

 expert defines

rules

rule

compatibility/

scalability

gets close;

user adaptable

rules explanationvia rule

parallelization

Neural

Networks

self-

organized

firing level

patterns

unknown

feature

relationships

data driven;

user objectives

training

breadth; HW

scalability

approximate;

non-linear

interpolation

numerous training

cases

massively parallel

chips

Unified algorithm

& rule

driven

normalized

representation

combination

s of the

above

analyst solves

hybrid

most

complex

most breadth alternative path

tests

via approximation



Decision Flow  for Technique Selection 
(Hypothesis Evaluation Example)

SCRIPTS/FRAMES

SYSTEM RULES

HYBRIDS

(5)

YES CASE-BASED REASONING
IS ON-LINE LEARNING

FROM USER NEEDED?

NO

Logical, Symbolic and ad hoc

Hypothesis Evaluation Technique SelectionPossibilistic, Non-Parametric and other Rigorous
Hypothesis Evaluation Technique Selection

(3)

CONDITIONAL EVENT ALGEBRAYES

IS SCORING
OF INFORMATION

CONDITIONED UPON
MULTIPLE EVENTS

YES

YES

EVIDENTIAL

FUZZY
SET THEORY

YES

IS UNIFORM
DISTRIBUTION
SUFFICIENT?

YES

NO

NO

IS A CONSISTENT MATHEMATICAL BASIS 
FOR SCORING NEEDED?

IS HIGH THROUGHPUT PER WATT SELF-CODING 
PATTERN RECOGNITION NEEDED?

IS JOINT PROBABILITY DENSITY FUNCTION 
SUFFICIENTLY KNOWN?

NO

POSSIBLISTIC & NON-PARAMETRIC

PROBABILISTIC

LOGIC/SYMBOLIC & AD HOC

NEURAL NETWORKS

YES

YES

(2)

(3)

(4)

(5)

(2)

[92]

HE Technique Selection
Decision Flow (4 of 5)[4,17,19]

Neural Network
Hypothesis Evaluation Technique Selection

UNSUPERVISED CLUSTERING NN

NO

YES

ARE SUFFICIENT 
SCORING TRAINING
SETS AVAILABLE? RECURRENT SUPERVISED NNYES

IS SPATIO-TEMPORAL
PATTERN RECOGNITION

NEEDED?

FEED-FORWARD SUPERVISED NNNO

(4)



Solution Selection Depends upon Problem Difficulty
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Hypothesis Selection Determines How Alternative 
Association World Views to Be Maintained

ÅDETECT AND 

RESOLVE DATA 
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Hypothesis Selection Problem

ÅNeed to Search through Association Matrix to find best 
Global Hypothesis

ÅAssociation Matrix:

ÅTypes of Global Hypotheses
ÅSet Partitioning: no two tracks (local hypotheses) share a report

ÅSet Covering:  There may be shared reports

ÅN-D Approaches:  Search All Scans by All Sources

ÅGlobally Optimal Solution

ÅComputationally Demanding                                                
(NP-Hard:  ¢Exponential Run-Time)

Å2-D Approaches:  Search only Current Scan

ÅLocally Optimal Solution

ÅPolynomial Run-Time
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Åάbƻ hōǎŜǊǾŀǘƛƻƴέ ŎƻƭǳƳƴǎ ŀŘŘŜŘ ǘƻ ŘŜƴƻǘŜ ǘƘŜ ōŜǘǘŜǊ ƘȅǇƻǘƘŜǎƛǎΣ I2, of false or propagated 
tracks for unassociated tracks

Åάbƻ !ǎǎƻŎƛŀǘƛƻƴέ Ǌƻǿǎ ŀŘŘŜŘ ǘƻ ŘŜƴƻǘŜ ǘƘŜ ōŜǘǘŜǊ ƘȅǇƻǘƘŜǎƛǎΣ I1, of false alarm or initiated 
tracks for unassociated reports

Å½ŜǊƻΩǎ ƛƴ ƭƻǿŜǊ ǊƛƎƘǘ ōƻȄ ŘƛǎŎƻǳǊŀƎŜ ǎŜƭŜŎǘƛƻƴ ƻŦ ƴƻƴ-association hypotheses 
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Conversion of Association Matrix for 2-D Assignment Problem



Entity Class Tree Confidence Update 
With Noncommensurate Sources

P(class C| all Si , H) = {Pi [{P(C|Si,H)/P(C|Y(Si all i), H)} P(C| Y(Si for all i), H)] } / SK {Pi [{P(K|Si,H)/P(K| Y(Si all i), H)} 

P(K| Y(Si  for all i), H)]}

if P(C|H)̧ 0 [= 0   if P(C|H)=0]

¶ C is the element of the fused entity class tree being updated,

¶ Si for each source i is its measured data [both kinematic and attribute]

¶ P(C|Y(Si), H) is the probability of an entity of type C given only kinematics data from source i & H, the 

association hypothesis,

¶ K is the index of type disjoint tree classes [summed over for normalization],

¶ P(C|Si,H) are the entity class tree confidences based upon all measurements from each source i

""""""



Sample Interlaced Network of DF&RM Dual Level Interactions 
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