Cyber-Physical Security Through Information Flow

Bruce McMillin

Professor and Interim Chair, Department of Computer Science 2018-2020 Distinguished Visitor

Missouri University of Science and Technology 325 Computer Science, 500 W. 15th St., Rolla, MO 65409 o/ (573) 341-6435 e/ ff@mst.edu

Cyber-Physical Security Through Information Flow

Bruce McMillin

Professor and Interim Chair, Department of Computer Science 2018-2020 Distinguished Visitor

Missouri University of Science and Technology 325 Computer Science, 500 W. 15th St., Rolla, MO 65409 o/ (573) 341-6435 e/ ff@mst.edu

Where is Missouri S&T

CPS

- Cyber-Physical Systems

 (CPS) are physical systems
 that are controlled and
 monitored through
 computer-based systems.
- Critical infrastructures of a nation are CPS
 - Water treatment plant
 - Smart grid
 - Manufacturing plant
 - Autonomous Vehicle
 - Airspace Management

A modern Cyber-Physical System

- Community
- Local Management
- Locally Sourced

Modern Security Domains

- Community
- Local Management
- Locally Sourced
- Secure
- Privacy Preserving

Non-Intrusive Load Monitoring

Management and Governance

- Utility?
 NISTIR 7628
- Cloud?
 - NERC CIP
 - Timing
- Fog?
 - IoT
 - Locally Managed
 - Locally Protected

https://www.wired.com/story/its-time-to-think-beyond-cloud-computing/

Cloud

Fog

Dew

Mist

Transactive Energy Management

Threats

- Physical
- Cyber
- Cyber-enabled Physical

Physically-enabled Cyber Stealing Plant Secrets

Firewalls

Figure Source, Manufacturers Automation, Inc.

Seems Simple, What could go wrong?

- Physical
- Cyber
- Cyber-enabled
 Physical
- Physically-enabled
 Cyber

SCADA System - from National Academies

- Business Network
- Centralized Supervisory Control And Data Acquisition (SCADA)
 - Electric Utility Control

Biba Model - 1975

- Integrity Levels:
- The higher the level, the more confidence

 That a program will execute correctly
 That data is accurate and/or reliable
- Note relationship between integrity and trustworthiness
- Important point: integrity levels are not security levels

Problems

- Subjects' integrity levels decrease as system runs
 - Soon no subject will be able to access objects at high integrity levels
- Alternative: change object levels rather than subject levels
 - Soon all objects will be at the lowest integrity level
- Crux of problem is model prevents indirect modification
 - Because subject levels lowered when subject reads from low-integrity object

BIBA

Security? Bell-La Padula

- Military Multi-Level Security Model
 - No Read Up

•

No Write Down

No Write Down

BLP

Transfer Power

MISSOURI

The overlapping security domains in an IoT smart grid environment.

Information Present in the Physical Entity

Information Flow Models

- A CPS performs physical actions that are observable
- Should keep these secret loss of confidentiality/privacy
- Should not keep these secret loss of integrity
- Some models
 - Non-interference Goguen and Messegeur 1982
 - High-level events do not interfere with the low level outputs
 - Non-inference O'Halloran 1990
 - Removing high-level events leaves a valid system trace
 - Non-deducibility Sutherland 1986
 - Low-level observation is compatible with any of the high-level inputs.

Information Present in the Physical Entity (Non-interference view)

Information Flow Models

- A CPS performs physical actions that are observable
- Should keep these secret loss of confidentiality/privacy
- Should not keep these secret loss of integrity
- Some models
 - Non-interference Goguen and Messegeur 1982
 - High-level events do not interfere with the low level outputs
 - Non-inference O-Halloran 1990
 - Removing high-level events leaves a valid system trace
 - Non-deducibility Sutherland 1986
 - Low-level observation is compatible with any of the high-level inputs.

Information Present in the Physical Entity (Non-inference view)

Information Flow Models

- A CPS performs physical actions that are observable
- Should keep these secret loss of confidentiality/privacy
- Should not keep these secret loss of integrity
- Some models
 - Non-interference Goguen and Messegeur 1982
 - High-level events do not interfere with the low level outputs
 - Non-inference O-Halloran 1990
 - Removing high-level events leaves a valid system trace
 - Non-deducibility Sutherland 1986
 - Low-level observation is compatible with any of the high-level inputs.

Information Present in the Physical Entity (Non-deducibility view)

The overlapping security domains in a CPS environment.

Non-deducibility

- Non-deducibility
 - Good?

The Challenge

- Prevent the bad guys from seeing confidential/private information.
- Make sure the good guys can deduce that an attack is happening from the bad guys
- In a CPS
- With the same model

Multiple Domain Nondeducibility

- Introduced a new model of Nondeducibility MSDND
- Defined with very few constraints
- Modal methods over Kripke frames
- Describes the CPS very well
- Provides a polynomial time reduction from ND to MSDND
- MSDND:

$$MSDND(ES) = \exists w \in W : w \vdash \Box [(s_x \lor s_y) \land \neg (s_x \land s_y)] \land [w \vDash (\nexists \mathbb{V}^i_x(w) \land \nexists \mathbb{V}^i_y(w))]$$

On any given world, the valuation functions, V_x^i (w) , will return the value of the corresponding state variable x as seen by an entity in a partition, i.

Multiple Domains of Stuxnet

Stuxnet Attack

Stuxnet Attack

Ģ.

2015/09/23 10:31:24 AM* Raw Water Inlet Flow Meter: Sensor Faulty 2015/09/23 9:57:55 AM Raw Water Outlet Flow Meter: Sensor Faulty

Working of MSDND PROCESS 1

LIT – Level Indication Transmitter, FIT – Flow Indication Transmitter, MV101 – Motorized Valves and P - Pump

- > Since $B_5I_{5,6} / \Lambda T_{5,6} / \rightarrow B_5 /$, the PLC believes the lie told in all cases. Therefore, unknown to entities in SD2, $V_2/(w)$ and $V_2 \sim / (w)$ cannot be evaluated. Therefore / is MSDND secure from SD2.
- > MSDND(ES) = $\exists w \in W \rightarrow [(S_{|} \bigoplus S_{\sim |})] \land [w | = (\nexists V^{SD5}_{\sim |}(w) \land \nexists V^{SD5}_{|}(w))]$
- > This is BAD for the plant as the threat goes undetected

MISSOURI

© Bruce McMillin May 2020

MISSOURI

- Now when we take the 'and' operation for both the normal working and when an invariant is considered, we can conclude that the system is working normally
- S_{invariant} A S_I = S^{*}; System is working normally if and if only this is true
- MSDND(ES) = $\exists w \in W \rightarrow [(S^* \bigoplus S_{\sim |})] \land [w | = (\nexists V^{SD5}_{\sim |})]$ (w) $\land \exists V^{SD5}_{|}(w))]$

P1_INV1	P1_INV2	P1_INV3	P1_INV4	P1_INV5	P1_INV6
Violated MV101 is OPEN => FIT101 > delta	Not Violated LIT101 is LOW => MV101 is OPEN	Not Violated LIT101 is HIGH => MV101 is CLOSE	Not Violated LIT101 is LOW LOW => P101 P102 ARE OFF	Not Violated LIT301 is LOW => P101 P102 ARE ON	Not Violated LIT301 High => P101 P102 OFF
Mon, 04 Dec 2017 13:41:33	Mon, 04 Dec 2017 13:41:33	Mon, 04 Dec 2017 13:41:33	Mon, 04 Dec 2017 13:41:33	Mon, 04 Dec 2017 13:41:33	Mon, 04 Dec 2017 13:41:33
P1_INV7					
Not Violated P101 P102 ON => FIT201 > delta					
Mon, 04 Dec					

• When an invariant fails, the tile with that invariant turns red

Process	Comp	Summary	Suggestions
Process 1	4	Invariants Developed : 4 Invariants Matching : 4 Vulnerabilities remaining : 0	Invariants for FIT and LIT should be modified to better capture multipoint attacks
Process 2	11	Invariants Developed : 7 Invariants Matching : 0 Vulnerabilities remaining : 6	Chemical processes should be further analyzed for getting more reliable invariants. Chemical dosing pumps and level indication should be modified.
Process 3	9	Invariants Developed : 4 Invariants Matching : 3 Vulnerabilities remaining : 2	Several attacks can be performed on motorized valves for damaging pumps and draining water. Install PIT near UF Unit to generate invariant for DPIT
Process 4	7	Invariants Developed : 3 Invariants Matching : 3 Vulnerabilities remaining : 1	Dichlorination Unit and NaHSO3 dosings effects chemical properties of water, using this, better invariants should be made as it effects RO Unit

Process	Comp	Summary	Suggestions
Process 5	16	Invariants Developed : 7 Invariants Matching : 0 Vulnerabilities remaining : 9	Many MSDND Secure paths are identified, invariants should be developed to break the MSDND security
Process 6	7	Invariants Developed : 2 Invariants Matching : 0 Vulnerabilities remaining : 5	Level switches should be replaced with level indicators, and more FIT's should be installed for getting invariant

© Bruce McMillin May 2020

MISSOURI

Another Typical Result

Figure 4: Power Testbed- Network Diagram

Power System Testbed in Singapore

- Solar
- Batteries
- Generators
- Loads

Summary	Count
Information paths analyzed	100+
MSDND secure paths found	89
MSDND secure paths broken using invariants	73
(Total invariants generated)	
Invariants implemented in the system	24

WHAT TO DO WITH THIS INFORMATION?

What to do with this information?

- Measure System Security Resilience
 - Using the uniform information flow model
- Improve Design
 - Mitigate MSDND paths
- Mitigate Attacks through Engineered Knowledge to Break MSDND

This is Hard to Do

- Active defense against
 - Cyber Enabled Physical
 - Physically Enabled Cyber

How to provide a functioning CPS without relying on assumptions of trust, but instead developing trust among components?

Goals

- Automated Security
 Domain Construction
 - Semantic Bridges and Oracle Owls
- Design-Centric
 - Port Hamiltonian Systems
- State Estimation
 - Algebraic, Spatiotemporal & Real-Time Dynamic State Estimation
- Data Science
 - Learn behavior with ground truth

MISSOURI

© Bruce McMillin May 2020

Experimentation on real infrastructures

• Power, Water, Manufacturing, Transportation

Association Rule Mining, Generalized Linear Modeling

Subtle Theft, Slow Drift

- Traditional View Castle/Maginot Line/BLP
 - High level vs low level
 - Firewalls, Defense in Depth
 - Does not address cyberphysical nor insider attacks

- Modern Environment
 - Multiple security domains
 - High/low, Insider vs Outsider has changed
 - We are INSIDE the system
 - How do we secure the cyberphysical?

Ethics in these systems

Trolley Problem

Will people use this?

- Privacy
 Norway vs. USA
- Resilience

 Cyber threats
- Fog?
 - Ethical Issues

Your Thoughts?

A Professional Society

- Local Seminars
- Get-together
- Quality
 - Accreditation
 - Peer Review
 - Standards

Cyber-Physical Security Through Information Flow

Bruce McMillin

Professor and Interim Chair, Department of Computer Science 2018-2020 Distinguished Visitor

Missouri University of Science and Technology 325 Computer Science, 500 W. 15th St., Rolla, MO 65409 o/ (573) 341-6435 e/ ff@mst.edu

