VHSIC and The First CMOS and Only Cryogenically Cooled Super Computer

David Bondurant
Former Honeywell Solid State Electronics Division
VHSIC System Applications Manager

ETA10 Supercomputer at MET Office - UK's National Weather Forecasting Service
Sources

• Cummings and Chase, “High Density Packaging for Supercomputers”

• Tony Vacca, “First Hand: The First CMOS And The Only Cryogenically Cooled Supercomputer”, ethw.org

• Robert Peglar, “The ETA Era or How to (Mis-)Manage a Company According to Control Data Corp.”, April 17, 1990
Background

• I graduated from Missouri S&T in May 1971
• My first job was at Control Data Corporation, the leading Supercomputer Company
• I worked in Memory Development
• CDC 7600 was in production, 8600 (Cray 1) was in development by Seymour Cray in Chippewa Falls, WI
• Star 100 Vector Processor was in Development in Arden Hills
• I was assigned to the development of the first DRAM Memory Module for a CDC Supercomputer
• I designed the DRAM Module Tester Using ECL Logic
• First DRAM Module was 4Kx32 using 128 1K DRAM Chips Mounted on 2 6x9 inch 12-Layer PCB with Freon Cooling

Control Data Corporation Arden Hills Development Center - June 1971
As long as we can make them smaller, we can make them faster.
~ Seymour Cray

#3 pencils and quadrille pads. (when asked what CAD tools he used to design the Cray I supercomputer)
~ Author: Seymour Cray
Sperry Univac

- I moved to Sperry Univac Defense Systems in 1972, the leading Navy military computer developer
- Developed Microprogrammed IOC and Disk Controller for Trident SPO using TTL Logic
- Upgraded & Qualified Trident CP-890B and IO Processor for Trident Submarine (DTL Discrete logic)
- Developed circuit & packet switches for McAutoNet
- Developed 32-bit Alternate Avionics Computer for B-1 Bomber (TTL Logic, FPLA)
- Developed microprogrammable Signal Process Element (SPE) parallel processor for sonar & radar processing (TTL, Bit Slice uP, VLSI Multiply-Adder)
- Developed First Mil-STD-1553 serial multiplex I/O module for Air Force SEAFAC Lab, Wright Patterson
- Chipset Architect for TRW, Motorola, Univac VHSIC Phase 0 Project
VHSIC Program
Very High Speed Integrated Circuits

• Prior to 1980, DoD determined that US military was lagging in deployment of leading edge technology in fielded system
• VHSIC Program started March 1980, during the next 10-years funded about $918M for 1.25 micron and 0.5 micron semiconductor development
Honeywell VHSIC Program
Phase 1

• A team of Honeywell & Motorola won 1 of 6 VHSIC programs

• Honeywell Solid State Electronics Division (Plymouth, MN) was the VHSIC technology developer

• Developed 3 VHSIC Process Technologies
 • 1.25 Micron ADB-3 Bipolar
 • 1.25 Micron CMOS-3
 • 1.25 Micron RiCMOS-3 (Radiation Hard CMOS)

Honeywell 1.25 Micron Bipolar CML Parallel Processor Chip with TAB Leadframe, Pin Grid Array Package (Smithsonian Museum)
In 1981, Control Data had just released the Cyber 205 Supercomputer.

CDC Advanced Design Lab began planning the next machine.

Key players - Neil Lincoln, chief architect, Tony Vacca, chief technologist.

CDC needed fast development of a much faster & cheaper supercomputer due to competition from Cray Research and several Japanese companies.

Initial approach - Evolutionary 8K gate ECL Gate Array developed by CDC for a Motorola Bipolar process.

Neil Lincoln and his architecture team quickly determined Bipolar ECL too low density, high power, and too expensive to meet their goals.

Supercomputer Performance 1980s
Honeywell VHSIC CMOS Activity

- At Honeywell Solid State Electronics (Plymouth), several VHSIC developments were underway
 - Bipolar Parallel Signal Processor (3 chips) - ADB-3
 - VLSI-6 16-bit Minicomputer on Chip - CMOS-3
 - Z-8 Microprocessor Macrocells for Custom Honeywell Residential Products - CMOS-3
- I was Design Manager for the Z-8 Microprocessor project team
- At CDC, Randy Bach was Project Engineer on a CMOS chip being developed for CDC Canada in 3 micron CMOS
- I presented results of our Z-8 development program at an IEEE lunch meeting to several members of ETA team
- ETA decided to implement ETA-10 using Honeywell VHSIC CMOS-3 Gate Array with 20K Gates operating at Liquid Nitrogen Temperatures (-300 Degree F)

Z-8 Microprocessor Macrocells
ETA-10 Program Results

- First Industry High Performance CMOS CPU
- First Industry Single Board Supercomputer CPU
- First Built-in Self-Test Computer
- First Industry Production Liquid Nitrogen CPU (and Only to Date)
- First CDC System to Use CAD for Chips, Boards, Logic Design, Test
- Multiple Price Points From Single Design

<table>
<thead>
<tr>
<th>ETA10 Models</th>
<th>P</th>
<th>Q</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time (ns)</td>
<td>24</td>
<td>19</td>
<td>10.5</td>
<td>7</td>
</tr>
<tr>
<td>#Processors</td>
<td>1-2</td>
<td>1-2</td>
<td>1-4</td>
<td>2-8</td>
</tr>
<tr>
<td>CPU Memory MB/CPU</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Shared Memory MB</td>
<td>64-512</td>
<td>64-512</td>
<td>256-1024</td>
<td>512-2048</td>
</tr>
<tr>
<td>Peak Performance MFLOPS</td>
<td>750</td>
<td>947</td>
<td>3429</td>
<td>10289</td>
</tr>
<tr>
<td>Cooling</td>
<td>Air</td>
<td>Air</td>
<td>Liquid Nitrogen (LN2)</td>
<td>Liquid Nitrogen (LN2)</td>
</tr>
<tr>
<td>Maximum I/O Units</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>
CPU Logic

- 1 cm 20K Gate 1.2 Micron CMOS Gate Array
- 284 I/O pads with solder bumps
- Effective 5 mil TAB Lead Pitch
- 2 input NAND Delay 860 ps room temp, 480 ps at -300 F
- Built-in Self-test for both Chip and Board Interface
- Parametric Cell Library for High Gate Utilization

20K Gate Array
284 I/O Pins

Placement Diagram Shows Parametric Cells
Built-In Self-test

- BIST Logic Added to Chip I/O
- Chip Test - Generates Own Test Operands and Calculates Test Signature for Automatic Logic Test
- Parametric I/O Test - All I/O can be set on or off, tristate on or off
- Wiring Tests - Test Operand entered on all chips and sent to all receiving chips, tests wiring for opens, shorts, grounded lines, etc.
Logic Packaging

- Ceramic Chip Carrier with 11 mil Tape Automated Bonding (TAB) to Board Connection
- TAB Die Attachment to Package (5 mil Pitch)
- Solder Bumps on 20K Chip
Single Board CPU

- ETA 10 Mounts 280 20K Chips On Single Board
- 16.5 x 22.5 x 0.250 inch FR4 PCB
- 44 Layers (20 Signal, 22 Power, 2 Surface)
- 75,000 drilled through-board via
- 50,000 buried vias
System Level Design

- The ETA-10 System Architecture Consisted of:
 - 1-8 Single Board CPUs with Local CPU Memory/CPU
 - Shared Memory Between CPUs
 - 1-16 I/O Units
 - Communication Buffers
 - A Service Unit
System Configuration
Cryogenic Systems

- For Cryogenic CPUs, CPU Boards were mounted in Cryostat which contain 2 CPU
- Significant Plumbing and a Separate Cryogenerator was Required to Distribute Liquid Nitrogen at -300 Degrees F
Final ETA-10 Systems

Cryogenically Cooled 7 ns ETA-10G

Air-cooled 24 ns ETA-10P
VHSIC Manufacturing

- Honeywell built the world’s first VHSIC manufacturing facility in Colorado Springs, CO by 1986
- Honeywell built 300 unique 20K gate array types for the ETA-10
- VHSIC Technology was also designed into the Honeywell DPS8000 and Honeywell Bull DSP-7000 mainframes
- Honeywell Digital Technologies recorded $62M Revenue from VHSIC Sales in 1987
- Honeywell was 8th largest ASIC Supplier in the world in 1987
Postscript

- A total of 27 ETA-10 Systems were sold (7 LN2 cooled, 20 Air-cooled) including:
 - Florida State University (SN#1, LN2)
 - Johnson Space Center
 - John von Neumann Center
 - Tokyo Institute of Technology (8 CPU, LN2)
 - Deutscher Wetterdienst, German Weather Service
 - UK Meteorological Service (UKMET)
 - Minnesota Supercomputer Center
- Key Problem with ETA-10 was late delivery of Unix OS
- On April 14, 1989, CDC Closed ETA Systems