Significant Loss of Safety-Related Electrical Power at Forsmark Unit 1

Briefing For Nuclear Power Engineering Committee
Institute of Electrical & Electronics Engineers

Thomas Koshy, Chief
Mechanical & Electrical Engineering Branch
Office of Research, USNRC
Thomas.Koshy@nrc.gov

NPEC Meeting July 16, 2008
Forsmark station
Sweden
Three Asea Atom BWR
1: 2928 MWth 1980
2: 2928 MWth 1981
3: 3300 MWth 1985
Presentation Outline

• Forsmark Safety Systems Overview
• Overview of Event
• Event Details
• Risk Insights
• Impact on US Plants
• Millstone-2 Electrical Event
• Action for IEEE
Forsmark Safety Systems
Overview

• Safety systems are divided into four trains, each with its own emergency diesel generator and capacity to manage 50% of the ECCS loads

• Two diesel generators started automatically and worked during the event
Overview of Event

• July 25, 2006; Plant at 100%
• Opened 400 kV disconnect and caused an Electrical Fault
• Generator voltage dropped to 30%
• Unit disconnected from the grid
• Generator over-voltage (OV) 120%
• OV caused 2 of 4 UPSs to fail
• 2 of 4 Emergency Diesel Generators (EDG) failed to connect to the safety buses
Maintenance work in the switchyard causes an arc and a short circuit. Unit 1 is disconnected from the grid and reactor scrams.

Failure in the generator protection results in generator breaker not opening. Generator breaker should open and transfer to 70kV offsite power.

Internal power supply is divided into four separate buses/trains (A,B,C,D) for emergency power.

Rectifier and inverter on buses/trains A&B fail. Buses A&B loss power and the signal to start the EDGs fail.
Supply Breakers Trip, EDG D Connects, EDG B Fails
Event Details

• Both generator breakers should have tripped immediately
 – Common Cause Failure

• Over voltage tripped two battery charges & two inverters (2/4 UPS shutdown)
 – Common Cause Failure

• 2/4 EDGs failed to energize the safety bus
 – Common design flaw

• Gas turbine failed to start
 – 70kV grid was available

• Loss of control room information
 – Loss of network power A&B
Risk Insights

• Plant Uniqueness that influence risk:
 – No steam/diesel-driven pumps (diversity w/defense in depth)
 – 2 Common Cause Failures (UPS, Generator Relay Protection)
 – EDG controls relied on AC power from UPS
 – Failure of power supplies to control room indications
 – Gas Turbine didn’t start
Risk Insights

• Inverter failures resulted in instrumentation without power on buses A&B
 – Control rod indication (buses A&B)
 – Neutron monitoring system (channels A&B)
 – Reactor level & pressure indications (channels A&B)
 – Faulty indication on electrical system mimic panels

• EDGs A&B failed to connect
 – Speed sensor was powered from inverter

• Plant could have lost all four inverters, battery chargers and EDGs along with loss of offsite power
Impact on US Plants

- Most EDG control and starting logic circuits for US nuclear power plants (NPP) are powered from the DC system instead of inverters as is the case in Forsmark.
- Control and starting circuits for US NPP are supplied either from dedicated Class-1E diesel generator batteries or from Class-1E station batteries.
Simplified Class 1E DC Power System

Fig 1
Event Unlikely for US Reactors

- DC systems for US NPPs are normally supplied by the battery chargers/rectifiers which are in turn powered from the AC distribution system.
- EDG battery could still supply the required DC power to start and control the emergency diesel generators loads for about 2 hours.
Event Unlikely for US Reactors

• U.S. plants are required per the 10 CFR 50.63 to be able to keep the core cooled and maintain containment integrity with a loss of offsite power & unavailability of onsite EDGs
Operating Experience

- Event Notification (EN) 25162, LER 93-001-00, Sequoyah Unit 2 “Large Steam Leak in MFW Heater Extraction Header”
 - IN 94-77 - Main Generator OV @ 119% for 3 minutes

- EN 21602, LER 91-017-01, Nine Mile Point 2 “Loss of Non-Class 1E UPS” (1991)
 - IN 91-64, Supplement 1 - Five UPS units shutdown as a result of a logic initiated trip
Millstone-2 Electrical Event

- On July 6, 1992, during a refueling outage, the licensee identified several undesirable failure modes of a two-out-of-four logic following an event. The plant was designed with two sensor cabinets and one actuation cabinet for each of the two trains. (*Information Notice 93-11*)
 - When power is lost to either one of the vital buses it caused safety injection and sump recirculation actuation.
 - When two of the sensor cabinets in a train lost power it caused the containment sump outlet valves to open.
 - Loss of DC power to one actuation train caused power operated relief valve in the other train to open.

- The logic was modified to limit certain combinations of two-out-of-four logic to prevent this problem.
NRC Guidance on Control Systems

• Bulletin 79-27 “Loss of Non-Class 1E Instrumentation and control Power System Bus During Operation” – Evaluate the effects of loss of power to control systems

• Generic Letter 89-18 “Systems Interactions in Nuclear Power Plants” – concerns regarding automated safety related actions with no preferred failure modes
Action for IEEE

- Consider revising IEEE 352-1987 to include the following:
 - Provide design guidance to address failure modes for reactor trip systems and core cooling systems
 - Provide design guidance for addressing known failure modes in software driven systems and the supporting hardware
 - Provide guidance on the defense-in-depth requirements for power supplies in the protection and information systems for reactor safety
ONE LINE DIAGRAM FOR SINGLE UNIT NUCLEAR STATION

TRANSMISSION SYSTEM

SWITCHYARD

Start up Transformers

FULL LOAD GENERATOR BREAKER

MAIN GENERATOR

NONCLASS 1E BUS A

CLASS 1E BUS A

EMERGENCY DIESEL GENERATOR

ALTERNATE AC POWER

CLASS 1E BUS B

NON CLASS 1E BUS B

Auxiliary Transformers

ONEC Meeting July 16, 2008