

THE INSTITUTE OF ELECTRONICS COMMUNICATIONS AND INFORMATION TECHNOLOGY

5G Beamformers: Resetting Connectivity Performance

IEEE Young Professionals Montreal Section Affinity Group Ottawa Section Affinity Group INRS IEEE student branches Polytechnique MTL Welcome ③ The webinar will start at 12:00 PM EST

> Muhammad Ali Babar Abbasi Lecturer (Assistant Prof.) go.qub.ac.uk/dr-abbasi

Fri, 5 February 2021 12:00 – 1:00 PM EST

Content and Structure

- Thank you note
- What is in this Webinar For You? (~10 minutes)
 - Important definitions
 - Why do we need beamformers?
- Beamformer Classifications (~30 minutes)
 - Latest trends in beamformers
 - Future prospects of beamformers
 - Intermediate Q&A

What is in this Webinar for YOU?

Together, we will:

- understand the role of antenna beamformers in 5G and beyond networks
- review the latest trends and applications, and will
- forecast future beamformers design for our hyper-connected world.

UNDERPINNING TECHNOLOGIES FOR MOBILE, MEDICAL AND SPACE

Centre for Wireless Innovation

Millimetre Wave Enabling Technology

- mmWave antennas & filters (ESA, Airbus MetOp2)
- Self-steered and retro-directive antennas
- Self-tracking SatComms (ESA)
- Sub-wavelength imaging

Mobile – 5G and beyond

- Physical Layer Modelling
- Massive MIMO (multiple-input and multiple-output)

Medical

- Wearable & implantable systems
- Antennas & propagation in biomedical applications

Connected & Autonomous Vehicles

- Ultra Reliable Low Latency Communications (URLLC)
- Machine-learning based 5G-V2X air-interface technology
- Multi-way communications for connectivity among several users
- Wireless Power Transfer

Antenna Beamformers – A Few Definitions

- An antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors (Modern Dictionary of Electronics).
- Beamforming is generally achieved by using **multiple antennas** in a form of an array.
- Antenna beamforming the ability of an antenna array to steer the maximum radiation towards a prescribed direction, or conversely, the ability of the antenna array to estimate the direction of arrival of an impinging signal.

$$P_r = P_t + G_t + G_r + 20\log\left(\frac{c}{4\pi f \times r}\right)$$

- P_r received power (dBm)
- P_t transmitted power (dBm)
- G_t and G_r transmitter and receiver antenna gains
- r distance between the point of received power P_r and the radiator

H. T. Friis, "A note on a simple transmission formula," Proc. IRE, vol. 34, no. 5, pp. 254–256, 1946.

Antenna Beamformers – A Few Definitions

Antenna structures with non-zero length exhibit preferential energy radiation in a given direction (θ , ϕ). This property can be defined as **antenna directivity**, *D*, as follows

 $D = \frac{\text{radiation intensity in a given direction}}{\text{radiation intensity averaged over all directions}}$

For a sphere the **average radiation intensity**, $\Phi(\theta, \phi)$, is $1/4\pi$ times the total power, P_T , radiated by the antenna, thus

$$D = \frac{4\pi\Phi(\theta,\phi)}{P_T} = \frac{4\pi\Phi(\theta,\phi)}{\int_{0}^{2\pi\pi}\int_{0}^{2\pi\pi}\Phi(\theta,\phi)\sin\theta d\theta d\phi}$$

 $G = \eta D$

Fusco, Vincent F. Foundations of antenna theory and techniques. Pearson Education, 2005.

Why Do We Need Beamforming?

- Multiple antennas connected to a single radio frequency source beamforming only along boresight direction.
- Same antenna array with bank of phase shifters beam scanning at an angle θ from the boresight direction.

Sequential phase shifts

Abbasi MA, Fusco VF. Beamformer development challenges for 5G and beyond. *Antennas and Propagation for 5g and Beyond:* IET. 2020 Sep 14:265.

Why Do We Need Beamforming?

- In communication systems, beamforming focuses the signal energy at certain places, less energy arrives to other places – space-division multiple access (SDMA)
- Spatially separated users are served simultaneously.

SDMA: E. Björnson, M. Bengtsson and B. Ottersten, "Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure [Lecture Notes]," in *IEEE Signal Processing Magazine*, vol. 31, no. 4, pp. 142-148, July 2014

Beamformer Classifications

- Classification based on architecture
 - Analogue beamformer
 - Digital beamformer
 - Hybrid or analogue/digital beamformers
 - Lens based hybrid beamformers
- Classification based on frequency (w.r.t 5G and beyond)
 - Beamformers at sub-6 GHz
 - Beamformers at mmWave
- Classification based on the use case
 - Fixed beamformers
 - Variable beamwidth Fixed Beamformer
 - Mobile beamformers

Beamformer Classification Based on

Architecture Frequency Use Case

© Queen's University Belfast, 2020-21

Based on Architecture

Analogue Beamformer

- \checkmark Low power consumption
- ✓ Less baseband processing
- Less flexibility

Digital Beamformer

- ✓ Extremely Flexible
- Highest power consumption
- Requires separate RF chains

Hybrid Beamformers

 \checkmark The best of both

Based on Architecture

Ala-Laurinaho, Juha, et al. "2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul." *IEEE Transactions on Microwave Theory and Techniques* 64.7 (2016): © Queen's University Belfast, 2020-21, Author: M. Ali Babar Abbasi

- Hybrid or Analogue/Digital Beamformers
- mmWaves analogue beamforming is required
- Die photograph of 25–30 GHz Fully-Connected Hybrid Beamforming Receiver
- implemented on 64-nm CMOS

S. Mondal, R. Singh, A. I. Hussein, and J. Paramesh, "A 25–30 GHz fully-connected hybrid beamforming receiver for MIMO communication," *IEEE J. Solid-State Circuits*, vol. 53, no. 5, pp. 1275–1287, 2018.

LO Port Phase Shifting Wilkinson Unit Splitter Frequency Conversion Antenna Front-end Circuits Array IF Port **Control Module** (On the Bottom) SIW Transmission **IF-path** Phase Line Shifting Network Control Interface

One phased sub-array system

Sub-array phase shifting network

R. Zhang, J. Zhou, J. Lan, B. Yang, and Z. Yu, "A High-Precision Hybrid Analog and Digital Beamforming Transceiver System for 5G Millimeter-Wave Communication," *IEEE Access*, vol. 7, pp. 83012–83023, 2019.

- Hybrid Beamformers
- 64/256 QAM, 26 GHz, -36 dBm P_{in}/channel
 - Left hybrid beamformer array chip and its scalability for **phased array**.
 - Right the blocker rejection and desired signal beamforming

M.-Y. Huang, T. Chi, F. Wang, T.-W. Li, and H. Wang, "A Full-FoV Autonomous Hybrid Beamformer Array With Unknown Blockers Rejection and Signals Tracking for Low-Latency 5G mm-Wave Links," *IEEE Trans. Microw. Theory Tech.*, 2019.

- Lens based hybrid beamformers
 - Lens before radiators

Lens after radiators

TY Abbasi, Muhammad Ali Babar, and Vincent F. Fusco. "Beamformer development challenges for 5G and beyond." Antennas and Propagation for 5g and Beyond: IET (2020): 265.

Main beam direction(s)	HPBW
Azimuth	
39°	28.1°
0°	24.6°
- 39°	28.1°
Elevation	
18°	29.0°
2°	35.4°
-16°	31.2°
QUEEN'S UNIVERSITY BELFAST	

51 beam mmWave beamformer

Abbasi, Muhammad Ali Babar, et al. "Constant-\${\epsilon} _ {r} \$ Lens Beamformer for Low-Complexity Millimeter-Wave Hybrid MIMO." *IEEE Transactions on Microwave Theory and Techniques* 67.7 (2019): 2894-2903.

Lens based beamformers, frequency diverse antenna

Abbasi, M. A. B., et al. "Frequency-diverse multimode millimetre-wave constant-ε r lens-loaded cavity." *Scientific Reports* 10.1 (2020): 1-12.

Beamformer Classification Based on

Architecture Frequency Use Case

© Queen's University Belfast, 2020-21

Based on Frequency

Beamformers at sub-6 GHz

- MIMO and Massive MIMO hundreds of antennas act phase-coherently and serve tens of terminals in the same time-frequency resource (Thomas Marzetta)
- Base station antenna array can acquire instantaneous channel state information (CSI)
- Cell-free massive MIMO The Ericsson Radio Stripes (3.5 GHz)

Massive MIMO and 5G: E. Ali, M. Ismail, R. Nordin, and N. F. Abdulah, "Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research," Front. Inf. Technol. Electron. Eng., vol. 18, no. 6, pp. 753–772, 2017. The Ericsson Radio Stripes: https://www.ericsson.com/en/blog/2019/2/radio-stripes

- Beamformers at mmWave –major considerations:
- Large bandwidth
- High Path loss is that so?
- The number of multipath required to serve users in mmWave cells are few

mmWave pathloss: W. Roh *et al.*, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," *IEEE Commun. Mag.*, vol. 52, no. 2, pp. 106–113, 2014.

Limited coverage and too costly

Significant path loss means coverage limited to just a few hundred feet, thus requiring too many small cells

Significant coverage with co-siting

Analog beamforming w/ narrow beam width to overcome path loss. Comprehensive system simulations reusing existing sites.

·· ·= ·· ·=

Works only line-of-sight (LOS)¹

Blockage from hand, body, walls, foliage, rain etc. severely limits signal propagation

Operating in LOS and NLOS¹

Pioneered advanced beamforming, beam tracking leveraging path diversity and reflections.

Only viable for fixed use

As proven commercial mmWave deployments are for wireless backhauls and satellites

Requiring large formfactor

mmWave is intrinsically more power hungry due to wider bandwidth with thermal challenges in small formfactor

Supporting robust mobility

Robustness and handoff with adaptive beam steering and switching to overcome blockage from hand, head, body, foliage.

Commercializing smartphone

Announced modem, RF, and antenna products to meet formfactor and thermal constraints, plus device innovations.

<u>https://www.qualcomm.com/media/documents/files/deploying-mmwave-to-unleash-5g-s-</u> <u>full-potential.pdf</u>

- Beamformers at mmWave additional considerations
- Spatial consistency
- Human body blockages
- NYUSIM: The open source 5G and 6G channel model simulator software
- QuaDRiGa: The next generation radio channel model

NYUSIM: S. Ju, O. Kanhere, Y. Xing and T. S. Rappaport, "A Millimeter-Wave Channel Simulator NYUSIM with Spatial Consistency and Human Blockage," 2019 IEEE Global Communications Conference (GLOBECOM), Hawaii, USA, Dec. 2019, pp. 1-6.

- Beamformers at mmWave
- World's first to aggregate mmWave and sub-6 for ultimate 5G performance and support for all-day battery life.
- 5G mmWave 800 MHz bandwidth, 8 carriers, 2x2 MIMO

- Peak Download Speed 7.5 Gbps
- Peak Upload Speed 3 Gps

https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-x60-5g-modem-rf-system-productbrief.pdf

Beamformer Classification Based on

Architecture Frequency **Use Case**

© Queen's University Belfast, 2020-21

Based on Use Case

- Fixed beamformers
- Not subject to mobility in a communication system

$$pathloss = \left(\frac{4\pi r \times f}{c}\right)^2$$

r – path length
f – frequency
c – speed of light
(all in SI units)

H. T. Friis, "A note on a simple transmission formula," *Proc. IRE*, vol. 34, no. 5, pp. 254–256, 1946.

 Variable Beamwidth Fixed Beamformer – consideration points

Trade-off between the beamwidth and network overheads depends upon:

- number of service beams
- Coverage area (cell size)
- Number of users,
- Network mobility (coherence time)
- Terminal mobility

Variable beamwidth beamfoming: W. Liu and Z. Wang, "Non-Uniform Full-Dimension MIMO: New Topologies and Opportunities," *IEEE Wirel. Commun.*, vol. 26, no. 2, pp. 124–132, 2019.

- Fixed beamformers
- Passive Radar at the Roadside Unit for Vehicle-to-Infrastructure Links
- Passive radar at the roadside unit reduces the training overhead via the spatial covariance
- To leverage the radar information for beamforming, the radar azimuth power spectrum (APS) and the communication APS should be similar.

Roadside passive radar: Anum, Ali, Nuria GonzalezPrelcic, and Amitava Ghosh. "Passive radar at the roadside unit to configure millimeter wave vehicle-to-infrastructure links." *IEEE Transactions on Vehicular Technology* (2020).

- Fixed beamformers
- Compressive Sensing for antenna array thinning and hardware reduction

31 x 31 antenna elements are shown to be reduced to 20 x 20 elements

Abbasi, Muhammad Ali Babar, Vincent Fusco, and Dmitry E. Zelenchuk. "Compressive sensing multiplicative antenna array." *IEEE Transactions on Antennas and Propagation* 66.11 (2018): 5918-5925.

QUEEN'S UNIVERSITY BELFAST

- Mobile beamformers
- Beamformer performance is critical
- Multiple units to avoid blockage

We've seen relatively few mmWave smartphones to date, and none have cost less than \$800 at launch.

Raghavan, Vasanthan, et al. "Handling dynamic blockage in millimeter wave communication systems." U.S. Patent No. 10,819,409. 27 Oct. 2020.

mmWave 5G uncertainty: https://www.androidpolice.com/2020/06/16/mmwave-5g-is-at-a-crossroads/ mmWave in mobile phone: https://www.mediatek.com/blog/mediatek-shows-its-5g-mmwave-antenna-design-forsmartphones-at-computex-2018

CONCLUSIONS AND PROSPECTIVES

CENTRE FOR WIRELESS INNOVATION

- Beamformer Classifications
- Architecture hybrid and lens-based hybrid
- Frequency sub-6GHz and mmWave
- Use case fixed, variable beamwidth fixed, mobile

Follow us: Twitter @CWI_QUB LinkedIn: centreforwirelessinnovation Contact us: Norbert Sagnard (n.sagnard@qub.ac.uk)

