Acquiring Operational and Non-Operational Data from Substation IEDs

Smart Grid Tutorial

John McDonald, P.E.
Director, Technical Strategy & Policy Development

June 6, 2012
“Operational” Data

- Data that represents the **real-time status, performance, and loading** of power system equipment
- This is the **fundamental information used by system operators** to monitor and control the power system
- Examples:
 - Circuit breaker open/closed status
 - Line current (amperes)
 - Bus voltages
 - Transformer loading (real and reactive power)
 - Substation alarms (high temperature, low pressure, intrusion)
“Non-Operational” Data

- Data items for which the **primary user is someone other than the system operators** (engineering, maintenance, etc.)
- Note that operators are usually interested in some data that is classified as non-operational
- Examples of “Non-Operational” data:
 - Digital fault recorder records (waveforms) (protection engineer)
 - Circuit breaker contact wear indicator (maintenance)
 - Dissolved gas/moisture content in oil (maintenance)
Characteristics of Operational and Non-Operational Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Operational Data</th>
<th>Non-Operational Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Format</td>
<td>Usually limited to individual time sequenced data items</td>
<td>Usually a data file that consists of a collection of related data elements</td>
</tr>
<tr>
<td>Real Time vs Historical</td>
<td>Usually consists of real-time or near real-time quantities</td>
<td>Mostly historical data: trends over time</td>
</tr>
<tr>
<td>Data Integration</td>
<td>Easily transportable by conventional SCADA RTUs using standard (non-proprietary) protocols</td>
<td>Typically use vendor specific (proprietary) formats that are not easily transported by SCADA communication protocols</td>
</tr>
</tbody>
</table>
Flow of Operational and Non-Operational Data

SCADA

SCADA Data Warehouse

Corporate Network

Planning

Engineering

Maintenance

Customer Services

Billing, Settlements

EMS/DMS Dispatchers

Secure Network

Substation Data Repository

Access to Operational and Non-operational Data

User Interface PC; Configuration, Monitoring, & Maintenance

Substation

Data Concentrator

Hardwired I/O

Transformer IEDs

DGA Monitors

Revenue Meter

GIS
Why Have Multiple Data Paths?

- Prevent “nuisance” alarms (alerts)
- Avoid burdening SCADA facilities
- Lack of SCADA support for file transfer and proprietary protocols
- Some useful IED non-operational data items use formats that may not be supported by legacy SCADA protocols
- Sheer volume of data (especially non-operational data)!
Acquisition of Operational Data Items

- SCADA protocol like DNP3 can be used to access most “simple” IED data items
- Data passed to SCADA supplier’s data warehouse (historian)

![Diagram showing the acquisition of operational data items](image)
Acquisition of Non-Operational Data Files – Basic Approach

1. Use manufacture specific software (or equivalent) to **extract data from the IED** (acSEl erator, TapTalk, etc)

2. **Capture the data** acquired by this software in a non-proprietary format

3. **Transmit (push or pull)** the resultant data file to a shared drive on the corporate network

4. **Enable authorized personnel to access the data** using standard analytical tools
Approaches for Obtaining Non-Operational Data

- **Approach 1**: Download directly from the IED

- **Approach 2**: Use “Pass through” capabilities of substation data concentrator

- **Approach 3**: Local data concentrator as non-operational data server
Approach 1 - Direct Download Approach

- Travel to the substation
- Plug laptop containing manufacturer specific data into PC
- Download data directly from the IED onto the laptop
- Transfer the data to the corporate network via docking station or other data off load mechanism
- Pro’s And Con’s
 + Low tech- low cost approach
 - Not continuous monitoring – delays in retrieving data
Approach 2 - “Pass Through”

- Copy of IED manufacturer specific software stored on IED access server
- End user connects to access server using multi-level authentication
- Access server establishes a “pass through” connection to IED in question via the substation data concentrator
- End user interacts with the IED and downloads the required data as though desktop PC was directly connected to the PC in the substation
- Downloaded data is then copied to a shared drive as necessary
- Pro’s/Con’s:
 + Technically simpler than network approach
 - Promotes data silos
 - Requires special IED software on each desktop PC

- Today, most systems use this approach!
Approach 3 - Data Concentrator as Non-Operational Data Gateway

- IED manufacturer software (acSELerator, Tap talk, etc) or equivalent loaded onto substation data concentrator

- Data concentrator communicates directly with the IEDs to acquire non-operational data files

- Data concentrator converts data files to standard format

- Converted data file “pushed” or “pulled” into ELSI
Approach 3 - Data Concentrator as Non-Operational Data Gateway

- Advantage of this approach:
 - Fewer field devices to manage from central location – 1 SDC versus multiple IEDs
 - Data files transferred over WAN using FTP, OPC or other standard method versus IED specific protocol

- Disadvantage
 - SDC must support the IED proprietary ASCII protocols
 - Not many do at this time