

RESEARCH FOUNDATION

RESEARCH FOR THE NFPA MISSION

ELECTRICAL SAFETY RESEARCH ADVISORY COMMITTEE

Meeting Minutes

RESEARCH PLANNING MEETING HILTON HEAD, SOUTH CAROLINA SATURDAY, 13 JANUARY 2018; 8:00 AM – 2:00 PM

- 1. <u>Call to Order, Agenda, and Attendees.</u> The meeting was called to order at 8:00 AM by Donny Cook, Chair of the Electrical Safety Research Advisory Committee (ESRAC). The meeting agenda was briefly reviewed and this is included as Attachment A. A summary of the attendees is included in Attachment B.
- 2. <u>Welcome and Meeting Overview</u>: Donny Cook welcomed everyone and provided a brief overview of the ESRAC. It was clarified that the membership of the ESRAC is open. An overview summary of the ESRAC was circulated and this is included as Attachment C. Casey Grant used slides to review additional overview information describing the role of the Foundation. These slides are included as Attachment D, and were used throughout the remainder of the meeting to help focus the meeting discussions.
- 3. <u>Summary of Previous Research Activities</u>. Casey Grant indicated that the last time the ESRAC compiled their research priorities was in June of 2016, and a summary of the identified research topics is included as Attachment E.

Meanwhile, all completed research projects conducted by the Foundation are posted on the FPRF web page (see <u>www.nfpa.org/Foundation</u>). Specifically, the Foundation's published reports on electrical topics are posted at: <u>http://www.nfpa.org/News-and-Research/Fire-statistics-and-reports/Research-reports/Electrical-safety</u>.

4. <u>Issue #1 – Branch Circuit Loading:</u> This topic was introduced by Casey Grant with reference to the earlier recent study posted on the Foundation's website at: <u>Evaluation of Electrical Feeder and Branch Circuit Loading: Phase 1</u> (2016). Larry Ayer, Chair of the NEC Correlating Committee Task Group on this topic provided a detailed presentation, and his slides are included in Attachment F. An effort is underway to consider NEC revisions for the design of branch and feeder circuit loading, recognizing that the electrical loads in today's buildings are much different than in the past, with

significant differences based on occupancy and other factors. Ultimately, more data is needed on actual usage.

A case study application involving health care occupancies has already seen efforts to collect data on this topic. Presentations were made by Walt Vernon and Jason D'Antona, and their presentations are included as Attachments G and H respectively. This provided specific data, and it facilitated the dialogue on clarifying on-going data needs.

This resulted in a discussion by all present that identified several key processing parameters and performance characteristics. It was indicated that we ultimately need to establish a process (with framework and protocols) to address this issue beyond the initial case study topic of healthcare. Further, the time frames need to be clarified for the immediate deliverables that can be realistically addressed in this NEC cycle, and those that should become the focus of future revision cycles.

Based on discussion by the entire group, the key performance characteristics that need to be considered relating to the collection of branch circuit loading data include the following:

- Critical Definitions and terminology (for consistent data collection, such as preferred units of measurement, defining ambient temperature, etc.);
- Equipment performance characteristics (including maintenance);
- Occupancies (and critical features of the occupancy, such as seasonal influences, geographic or regional differences, special loads such as a mass casualty event in healthcare, etc.);
- Methodologies used for data collection (in support of ultimate analytical approaches to be used); and
- Data Characteristics (with statistical validity).

At this time the NEC Correlating Committee Task Group will continue to review the data and related information collected for healthcare occupancies. They will focus on specific possible changes for this cycle of the NEC, and in parallel will consider the optimum approach for extending this to all occupancies in the future. The Foundation will be on standby to assist with addressing this topic, and will stay in touch as the Task Group proceeds.

5. <u>Issue #2 – Power Over the Ethernet:</u> This is seen as an important issue involving emerging technology, and involves the combined use of cables and conductors for both electrical power and communication.

This has potentially sweeping implications for the NEC, as well as other NFPA codes and standards such as NFPA 72 (National Fire Alarm and Signaling Code, NFPA 730 (Guide for Premises Security, NFPA 731 (Standard for the Installation of Electronic Premises Security Systems), and NFPA 1221 (Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems). Further this involves codes and standards from other organizations, adding to the complexity of this issue. The recent workshop on this topic held in October 2017 in Durham NH was referenced, and the Proceedings for this workshop are posted at <u>Workshop: Power Over the Ethernet.</u>

Discussion indicated that, in general, this comes down to: sending data and some amount of power through cables that aren't necessarily designed or tested to handle both safely and accurately over the long term. The discussion around this focused on needing a framework before more could be done (even definitions are unclear). The following are the primary identified needs:

- Definitions and terminology (e.g., cable, data-lines, wireless, etc.);
- Data (including modelling based on data, adverse outcomes, centralized failure analysis, etc.);
- Clarify and define key stakeholder expectations (enforcers, inspectors, insurers, etc.);
- Training, education and awareness (including simplified mainstream easily understood outreach); and
- Regulatory coordination (including among model code and standards organizations).

A key issue is to consider the establishment on an on-going process and framework to consider this issue across multiple organizations (such as a United Nations type activity focused on PoE). The establishment of such an activity has clear challenges, though this should be considered at upcoming joint meetings.

The Research Foundation will seek to set-up another follow-up planning effort on PoE, if possible in June 2018 at the NFPA C & E in Las Vegas. This will focus on further refining this issue into actionable strategies, and further addressing the outcomes from the Durham workshop. Specific items to address include sub-details such as the regulatory landscape, definitions, terminology, required data, performance issues, stakeholders, training, new vs. retrofit, and other issues. More information on this will be circulated when it becomes available.

 <u>Issue #3 – AFCI/GFCI:</u> Several Research Fund submittals have been received on AFCIs and GFCIs in this latest round as well as previous rounds, and thus there was a general discussion on these topics. Likewise during the last ESRAC meeting in June 2016 this was considered an important research area. It was acknowledged that these are technically different applications, and have noteworthy differences despite commonalities.

For both AFCIs and GFCIs, the discussion focused on the need for data, with a two-pronged focus on retrospective data (existing data; looking backward) and prospective data (data not yet collected; looking forward). The challenges of collecting data were identified as existing vs. retrofits, enforcement quality, installation quality, fire vs. shock, investigation quality, etc. Detailed case study comparison would be useful, as well as clear residential electrical fire data (consistent with research fund submittal #1803).

7. <u>Issue #4 – Marina Electrical Safety:</u> The need to address ESD (electric shock drowning) remains a significant concern among the electrical community, though the best next steps to positively impact this issue remains elusive and more work is needed. Late last year the Foundation published the report on <u>Marina Risk Reduction</u>, and this now provides a critical baseline that compares the risk and overall value of the full spectrum of mitigation measures.

Several specific projects received in the Research Fund relating to this topic were discussed. This includes #1880, which considers a comparison with NFPA 72 that takes a similar approach with

smoke detectors. Submittals #1880 and #1881 are distinctly different though related (e.g., chemical corrosion vs. environmental). It was suggested that we consider future research that is regulatory focused consistent with the concepts of community risk reduction. This could or would clarify:

- The magnitude of applications, with specific sub-details and trends of use
- The regulatory approach by jurisdiction or state
- Summarize the regulatory landscape
- Identify successful jurisdictional case studies
- 8. <u>Overall Review of Proposed Electrical Projects</u>. Casey Grant provided a summary of the Project Statement Form that was circulated prior to the meeting with a memo to identify possible research projects. Multiple proposed projects were collected, and a summary of the Research Projects under review was circulated earlier to the ESRAC, and likewise a hard copy was made available to meeting attendees. A summary form was provided and attendees were asked to complete and return this to staff by the end of the meeting. A compilation of the results of the most desired research efforts was generated after the meeting, and this is included as Attachment I. This will provide useful guidance on the ultimate direction of the limited resources to address these proposed projects.
- 9. <u>Concluding Remarks and Adjournment.</u> Donny Cook reminded all interested parties to participate in these activities and let the Research Foundation know about possible sponsors and other important details. Casey Grant indicated that the Foundation will be looking into moving forward on certain issues that are viewed as priorities. It was suggested to repeat this ESRAC meeting later in 2018 at the San Diego NEC Panel meetings, and staff will plan for such a meeting.

ESRAC attendees were thanked for their participation and contribution to this meeting. A meeting summary will be prepared by staff and circulated. The meeting was adjourned at 2:00 pm.

	(meeting	Bounniary by c. Grand,
	<u>Attachments</u>	
Attachment	Description	No. of Pages
А	Meeting Agenda	1
В	Summary of Meeting Attendees	2
С	ESRAC Overview	2
D	Slides for ERAC Meeting Overview (by Casey Grant)	4
E	Summary of Research Topics from June 2016	2
F	Slides on Branch Circuit Loading (by Larry Ayer)	5
G	Slides on Branch Circuit Loading (by Walt Vernon)	4
Н	Slides on Branch Circuit Loading (by Jason D'Antona)	4
I	Summary of Research Fund Electrical Priorities	1

(Meeting Summary by C. Grant, 12/Feb/2018)

ELECTRICAL SAFETY RESEARCH ADVISORY COMMITTEE

RESEARCH PLANNING MEETING

Agenda

Last Updated: 17 December 2017 Subject to further updates

Saturday, 13 January 2018

8:00 am - 3:00 pm

Sonesta Resort Hilton Head Island (formerly the Crowne Plaza) 130 Shipyard Drive Hilton Head, SC 29928

(Dress code: business casual)

1.	Welcome, Introductions, Preliminaries & Background	(8:00 am – 8:30 am)
2.	Issue #1: Branch Circuit Loading	(8:30 am – 10:00 am)
	Break	(10:00 am – 10:15 am)
_		
3.	Issue #2: Power Over the Ethernet	(10:15 am – 11:15 am)
4.	Review of Data Collection Efforts (for Issues #1, 2, & 3)	(11:15 am – 12:00 pm)
		(12.00
	Working Buffet Lunch	(12:00 pm – 12:30 pm)
5.	Issue #3: AFCI/GFCI	(12:15 pm 1:15 pm)
э.	ISSUE #3: AFCI/GFCI	(12:15 pm – 1:15 pm)
6.	Identification and Prioritization of Other Research	(1:15 pm – 2:45 pm)
0.		(1.13 hill – 5.43 hill)
7.	Meeting Summary, and Adjournment	(2:45 pm - 3:00 pm)
1.	Meeting Summary, and Adjournment	(2.45 pm 5.00 pm)

Note: Information on the venue and related NEC Code Making Panel meetings can be found at: <u>http://www.nfpa.org/assets/files/AboutTheCodes/70/70_A2019_NEC_FD_meetingnotice_01_18_REV.pdf</u>

<u>Electrical Safety Research Advisory Committee;</u> Saturday 13 January 2018 (8 am to 3 pm) ----- Hilton Head, SC

Last Updated: 15 January 2018

Attendees

Allei	luees		
1	Kevin Arnold	Eaton	kevinsarnold@eaton.com
2	Larry Ayer	IEC & Bizcom Electric	larryayer@bizcomelec.com
3	George Bish	Ring	gjbish@gmail.com
4	Alpesh Bhobe	Cisco	abhobe@cisco.com
5	Dan Buuck	NAHB	DBuuck@nahb.org
6	Greg Clement	Fluor	gregory.clement@fluor.com
7	Dave Clements	IAEI	dclements@iaei.org
8	Terry Coleman	Electrical Training Alliance	terryc@najtc.org
9	Donny Cook	Shelby County AL	dcook@shelbyal.com
10	Dale Crawford	Steel Tube Institute	dcrawford@steeltubeinstitute.org
11	Amy Cronin	Strategic Code Solutions	acronin@codestrategist.com
12	Jason D'Antona	Thompson Consultants, Inc.	jdantona@thompson-consultants.com
13	Vince Dellacroce	Siemens	vincent.dellecroce@seimens.com
14	Randy Dollar	Siemens Industry, Inc.	randy.dollar@siemens.com
15	James Dollard	IBEW 98	Jimdollard98@aol.com
16	Thomas Domitrovich	Eaton	thomasadomitrovich@eaton.com
17	Steve Douglas	CSA	iaei@rogers.com
18	Paul Dobrowsky	Innovative Technology Services	pauldobrowsky@aol.com
19	Mark Earley	NFPA	mwearley@nfpa.org
20	Nehad El-Sherif	IEEE	nehad.e.el-sherif@ieee.org
21	Ben Evarts	NFPA	bevarts@nfpa.org
22	Michael Fontaine	N.E.S.G., Inc.	mdfontaine@outlook.com
23	Casey Grant	FPRF	cgrant@nfpa.org
24	Eddie Guidry	Fluor	eddie.guidry@fluor.com
25	David Hewitt	Siemens Industry, Inc.	hewitt.david@siemens.com
26	Mark Hilbert	MRHilbert Electrical Inspection	mhilbert@mrhilbert.net
27	David Hittinger	IEC	davidhittinger@gmail.com
28	Mike Holt	Mike Holt Enterprises	mike@mikeholt.com
29	Raymond Horner	Atkore International	RHorner@atkore.com
30	Brian House	Mike Holt Enterprises	brian@mikeholt.com
31	Christel Hunter	Cerrowire	chunter@cerrowire.com
32	Randy Hunter	HTS	randy@huntertechnical.com
33	Randy Ivans	UL ULC	randy.ivans@ul.com
34	Diana Jones	NFPA	djones@nfpa.org
35	John Kacperski	P2S Engineering / BICSI	john.kacperski@p2seng.com
36	Stan Kaufman	Cable Safe	cablesafe@bellsouth.net
37	Doug Lee	CPSC	DLee@cpsc.gov
38	Kevin Lippert	Eaton	kevinjlippert@eaton.com
39	Linda Little	IBEW #1	linl@stlejatc.org
40	Keith Lofland	IAEI	klofland@iaei.org
41	Todd Lottmann	Eaton	toddflottmann@eaton.com
42	Alan Manche	Schneider Electric	alan.manche@schneider-electric.com
43	Tim McClintock	NFPA	tmcclintock@nfpa.org
44	Bill McCoy	IEEE	wjmccoy@verizon.net
45	Roger McDaniel	EEI	rodmcdan@southernco.com

46	Jim McDonald	NECA	Jimmcdonald51@live.com
47	Chuck Mello	CDCMello Consulting LLC	chuck@cdcmello.com
48	Dave Mercier	Southwire	dave.mercier@southwire.com
49	Gil Moniz	NFPA	gmoniz@nfpa.org
50	Joel Moody	Electrical Safety Authority	Joel.Moody@electricalsafety.on.ca
51	Mark Ode	UL	mark.c.ode@ul.com
52	Brian Rock	Hubbell Inc.	Brian.rock.electrotechnical@gmail.com
53	Steve Rood	Legrand	steve.rood@legrand.us
54	Vince Saporita	Saporita Consulting	v.saporita.pe@ieee.org
55	Jeff Sargent	NFPA	jsargent@nfpa.org
56	Anthony Tassone	UL	Anthony.T.Tassone@ul.com
57	Walt Vernon	Mazzetti	walterv@mazzetti.com
58	Derek Vigstol	NFPA	dvigstol@nfpa.org
59	Joseph Wages, Jr.	IAEI	jwages@iaei.org
60	Keith Waters	Schneider Electric	keith.waters@schneider-electric.com
61	Wesley Wheeler	NECA	wesley.wheeler@necanet.org

Advisory Committee on Electrical Safety Research

Last Updated: 7 August 2017

Goal

To enhance electrical safety through research and education in support of NFPA Electrical Codes and Standards

Reporting Structure

The Committee is a subdivision of the Fire Protection Research Foundation (the Foundation), which is solely responsible for its administration.

Membership

The Committee is open to all individuals who support its mission; membership will be attained by registration with the administrator of the Foundation. The Executive Director of the Foundation will appoint an initial Chair of the Committee, to serve until a Chair and Vice Chair are elected by membership of the Committee for two year terms, or until their successors are elected and qualified.

The staff liaison of the NEC Code Making Panels, the staff liaison of other NFPA electrical codes and standards, appointed liaisons from these committees and from the Fire Protection Research Foundation Board of Trustees will serve by designation as members of the Committee.

Role of the Foundation in General Committee Activities

The Foundation shall oversee and have general charge of the affairs and activities of the Committee. The Foundation shall designate a non-voting secretary to the Council, the secretary shall provide administrative services to its activities, including meeting arrangements, record keeping, and other activities as determined to be appropriate by the Board of Trustees.

Activities of the Committee

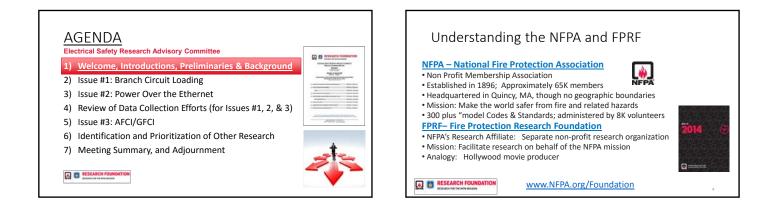
The Committee will meet at least annually; additional meetings may be held at the call of the Chair. An annual report of Committee activities will be provided to all members. Regular electronic communication on current activities will be provided through electronic means.

The Chair of the Committee will recommend designated individuals to carry out various activities in support of the mission including: research planning, representation on Foundation Project Technical Panels, and symposia planning committees, etc, as needed.

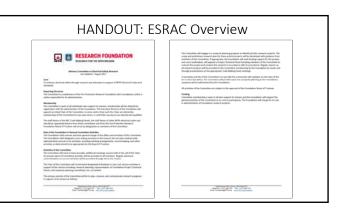
The primary activity of the Committee will be to plan, oversee, and communicate research programs in support of its mission as follows:

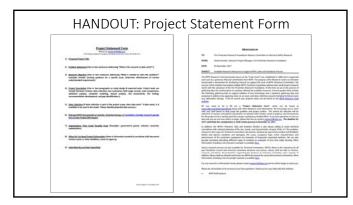
The Committee will engage in a research planning program to identify priority research projects. The scope and preliminary research plan for these priority projects will be developed with guidance from members of the Committee. If appropriate, the Foundation will seek funding support for the project, and, once undertaken, will appoint a Project Technical Panel including members of the Committee to oversee the project and conduct the research in accordance with its procedures. Regular reports on all research projects will be provided to the Committee membership by the Foundation by email, and through presentations at the appropriate Code Making Panel meetings.

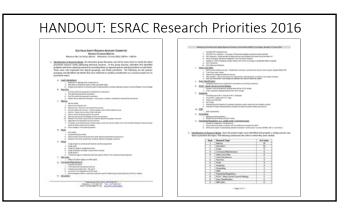

A secondary activity of the Committee is to provide the community with updates on the state of the art in electrical safety. The Committee will provide input into symposia planning at the Foundation; symposia will be administered by the Foundation.

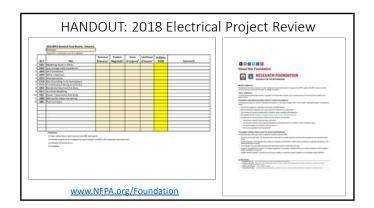

All activities of the Committee are subject to the approval of the Foundation Board of Trustees.

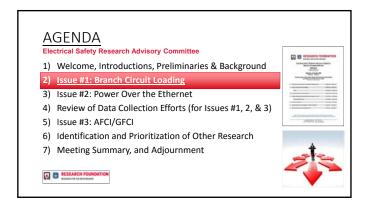
Funding

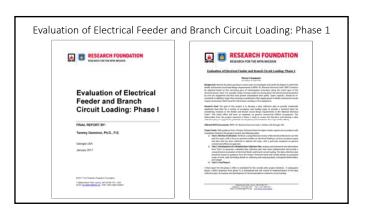

Committee membership is open to all who support its mission and the Foundation will support the general activities of the Committee at no cost to participants. The Foundation will charge for its role in administration of Foundation research projects.

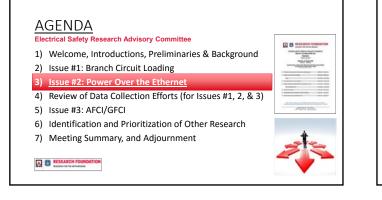


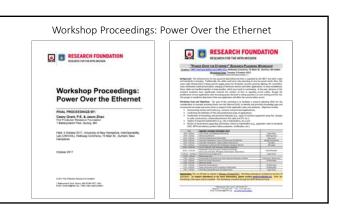


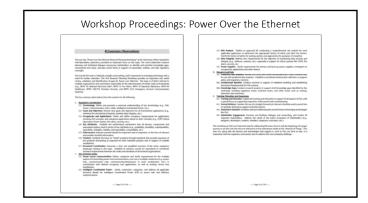


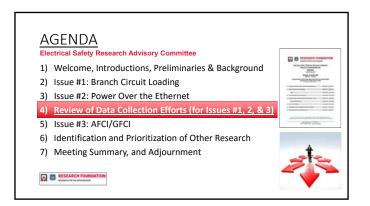


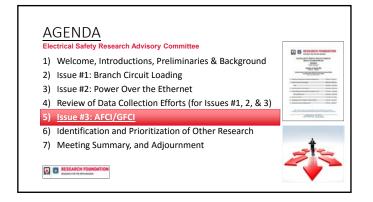


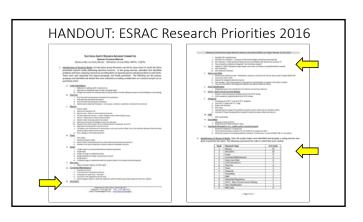


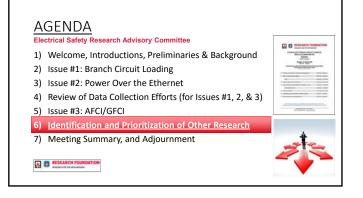












ELECTRICAL SAFETY RESEARCH ADVISORY COMMITTEE

RESEARCH PLANNING MEETING

MANDALAY BAY, LAS VEGAS, NEVADA WEDNESDAY, 15 JUNE 2016; 2:00 PM – 5:00 PM

1. <u>Identification of Research Needs</u>. An interactive group discussion was led by Casey Grant to clarify the latest prioritized research needs addressing electrical concerns. In this group exercise, attendees first identified problems and issues requiring research by recording them on separate post-its and placing them on wall charts. These were next separated into logical groupings, and finally prioritized. The following are the primary groupings and identified sub-details that were indicated as needing consideration as a research project (in no prioritized order):

a. Load Calculations

- i. Reduction in lighting w/SF in table 220.12
- ii. Real data on residential loads v/s NEC calculated loads
- iii. Energy consumption of consumer electric devices (Note: Consider adding to project on branch/feeder circuit loading)

b. Post Fire

- i. Post fire electrical equipment and electronic evaluations
- ii. Post lightning equipment evaluation
- iii. Post fire electrical equipment evaluation
- iv. Deaths due to electrical fires/year root causes; Locations: residential, industrial & commercial

c. Marina

- i. Marina safety
- ii. Marina risk reduction (4)
- iii. Marina issue Boat v/s marina electrical service
- iv. RV parks electrical services similar problem exist as Marina/Boat issues
- v. Marina Zipse stray currents, Marina & Boat
- vi. Electric shock drowning need to be solved
- vii. Marinas and sources of leakage current risk reduction
- viii. Research into what causes marina incidents beyond newspaper accounts
- ix. Aged electrical equipment around marinas
- x. Conditions and maintenance of shore power cords and marinas (Note: this is the interface between fixed and boat power & often drape into the water)
- xi. Stray voltage in municipal equipment

d. <u>Pools</u>

- i. Pool safety
- ii. Equipotential grounding
- iii. Electro-shock drowning issues from other electrical equipment (pumps etc.)
- iv. Research into what caused pool incidents beyond newspaper accounts
- e. <u>Surge</u>
 - i. Surge impact to commercial/industrial sensitive equipment
 - ii. Surge study
 - iii. Impact of surge in residential homes
 - iv. Surge protection (3) (Note: Top priority to revisit)
 - v. Surge phase 2
 - vi. Transient/surge on residential electrical systems (Note: Prior studies are becoming old)
- f. <u>NM cable</u>
 - i. Effect of water ingress on NM cable
- g. Corrosion/Maintenance
 - i. Quantify corrosion
 - ii. Track electrical maintenance failures
 - iii. Underground cable tasks life span?
 - iv. Corrosion in PV applications & life cycle
 - v. Electromagnetic effect in alternate materials used for telecom grounding (Majority of ferrous metals)
- h. AFCI/GFCI

- i. Quantify AFCI tripping issues
- ii. AFCI/GFCI arc reduction successes of these technologies saving lives (documented)
- iii. AFCI advocacy What percent of false trips are real problems and what do we do about it?
- iv. Glow connection detection/mitigation? Can it be done cheaply?
- v. Update UL 1699 Tripping by energy release, how much arc energy is acceptable before tripping?
- vi. GFCI limitations
- vii. GFCI distance limitations
- i. Injury Loss Data
 - i. Electrocution deaths per year Residential, industrial, commercial & marine. Root causes? Update NEMA 5PP.
 - ii. Track injury near misses
 - iii. Research & categorize electrical injuries
 - iv. Data needed ratio of journeyman to apprentices, illustrating the correlation with safety incidents
 - v. How can Information Technology and big data can improve electrical safety?
- j. Area Classification
 - i. Mitigating hazard area classification boundaries encroaching roadways
- k. <u>SCCR Short Circuit Current Ratings</u>
 - i. Elevator control equipment applied beyond their SCCR ratings
 - ii. HVAC equipment applied beyond their SCCR ratings
- I. Ampacity
 - i. Increasing use of 90 °C wire at its 90 °C ampacity.
 - ii. Use of 90 °C cables with 75 °C logs
 - iii. Power over Ethernet
 - iv. EGC sizing
 - v. Heating (thermal impact) of insulated conductors within metal and non-metallic conduit
 - vi. Internet of things interoperability concepts for electrical power safety and security
- m. <u>EMP</u>

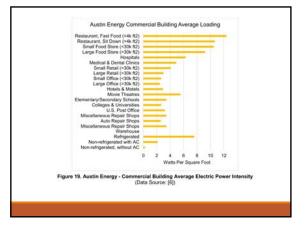
о.

- i. EMP vulnerability
- n. Grounding
 - i. Aging grounding problems
 - ii. Equipment grounding conductor sizing
 - Standards/Regulatory (i.e., public policy oriented issues)
 - i. Standards Integration in Engineering
 - ii. Which electrical safety concepts from IEC 60364 be conveyed into NEC?
 - iii. NFPA pilot project on developing selected standards "continuously" as does ASHRAE, NSF, UL and others.
- 2. <u>Identification of Research Needs</u>. Once the project topics were identified and grouped, a voting exercise was done to prioritize the topics. The following summarizes the order in which they were ranked:

Rank	Research Topic	# of votes
1	Marina	20
2	AFCI/GFCI	10
3	Surge	9
4	Corrosion/Maintenance	6
4	Injury Loss Data	6
5	Load Calculations	5
6	Post Fire	4
6	Pools	4
6	Ampacity	4
7	Grounding	2
7	EMP	2
8	Standards/Regulatory	1
8	SCCR – Short Circuit Current Ratings	1
8	Area Classification	1
9	NM Cable	0

CC Energy Task Group

• Where we are...


- Review important proposed changes to Table 220.12.
- What we need to be successful moving forward
- Consolidate energy in specific direction

• Where we want to go

Energy Task Group

Larry Ayer (Co-Chair), IEC Alan Manche (Co-Chair), Schneider Electric Donny Cook, IAEI Eric Richman, Ashrae 90.1 John McCamish, IBEW Ken Boyce, UL Mike Weaver, NECA Richard Holub, American Chemistry Council Steve Douglas, CSA Tom Domitrovich, NEMA Tim Croushore, Edison Electric Institute Tim Pope, CSA

Office BldgHVAC load for Office Bldg6Lighting Allowance3.5Outlets2.7Other??Total12.2 Watts/s.f. + other??

Device	Number	Active (W)	Idle (W)	Sleep (W)	Standby (W)
Desktop computer	61	78.9	45.6	3.2	2.2
Notebook computer	20	74.7	30.3	1.6	1.6
LCD display	84	34.2	26.4	6.2	0.9
Laser MFD	18	75.7	26.1	5.4	5.5
Laser printer	33	130.1	19.0		11.4
Inkjet printer	13	64.0	6.8	4.7	2.7
Computer speakers	18	6.0	2.4		1.7
External drive	2	28.4		10.7	1.0
Ethernet hub or switch	9	17.0	8.0	5.9	1.3
USB hub or switch	2	26.0	14.1	5.9	0.6
LCD television	2	58.2			3.1
Video projector	4	181.9		9.8	4.6
Portable CD player	7	18.0	3.0		1.3
Speakers (audio)	6	32.0	10.0		1
Coffee maker	10	464.0	40.3		1.8
Shredder	4	78.4			0.8
Space heater	4	937.7			1.0
Toaster oven	1	1057.9			0.0
*Devices and data selecte	d from Tabi	e 11 in [14]			

- Section 8.5 Data Analysis
- ✓ Evaluation of Lighting Load
- Evaluation of Receptacle Load (NEC 2023)
- Evaluation of Other Loads (NEC 2023)
- Evaluation of In-House Feeder Sizing and Transformer Loading
- Evaluation of Main Feeder Size and Service Transformer Loading
- General Evaluation of Power Quality

NEC Occupancy Type	Building Area Type	NEC (watts/sf)	ASHRAE 90.1-2013 (watts/sf)	Percentage Difference
Office	Office	3.5	0.82	<mark>327%</mark>
Garages - commercial (storage)	Parking Garage	0.5	0.21	138%
	Pententiary		0.81	
	Performing arts theater		1.39	
	Police Station		0.87	
	Post Office		0.87	
Churches	Religious building	1	1	<mark>0%</mark>
Stores	Retail	3	1.26	138%
Schools	School/university	3	0.87	<mark>245%</mark>
Armories and auditoriums	Sports Arena	1	0.91	10%
	Town Hall		0.89	
	Transportation		0.7	
Warehouse/Storage	Warehouse	0.25	0.66	<mark>-164%</mark>
	Workshop		1.19	

NEC 2017 Table 220.12 Occupancies	ASHRAE 90.1	NEC 2020 Table 220.12 Occupancies
	Automotive Facility	Automotive Facility
	Convention Center	Convention Center
Court rooms	Courthouse	Courthouse
Clubs	DINING: BAR LOUNGE/LEISURE	
Restaurants	DINING: CAFETERIA/FAST FOOD	Restaurants
	DINING: FAMILY	
	Dormitory	Dormitory
	Exercise Center	Exercise Center
	Fire Stations	Fire Stations
Armories and Auditoriums	Gymnasium	Gymnasium
	Healthcare	Healthcare
Hospitals	Hospital	Hospital
Hotels and motels, including		Hotels and motels, including
apartment houses without		apartment houses without
provisions for cooking by		provisions for cooking by
tenants	Hotel	tenants
	Library	Library
	Manufacturing	Manufacturing
	Motel	
	MOTION PICTURE THEATRE	MOTION PICTURE THEATRE
Dwelling	MULTI-FAMILY	
	MUSEUM	MUSEUM
		8

NEC 2017 Table 220.12 Occupancies	ASHRAE 90.1	NEC 2020 Table 220.12 Occupancies
Office Building	OFFICE	OFFICE
Banks	OFFICE	OFFICE
Garages - commercial		
(storage)	PARKING GARAGE	PARKING GARAGE
	PENITENTIARY	PENITENTIARY
	PERFORMING ARTS THEATER	PERFORMING ARTS THEATER
	POLICE STATIONS	POLICE STATIONS
	POST OFFICE	POST OFFICE
Churches	RELIGIOUS BUILDINGS	RELIGIOUS BUILDINGS
Stores		
Barber shops and beauty parlors	RETAIL	RETAIL
Schools	SCHOOL/UNIVERSITY	SCHOOL/UNIVERSITY
	SPORTS ARENA	SPORTS ARENA
	TOWN HALL	TOWN HALL
	TRANSPORTATION	TRANSPORTATION
Warehouse	WAREHOUSE	WAREHOUSE
	WORKSHOP	WORKSHOP

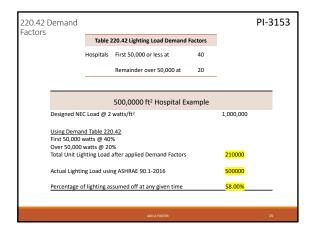
	Bldg Type	2016	2013	2010	2007 2004	2000 1999	1989*	1980
1	AUTOMOTIVE FACILITY	0.71	0.80	0.8	0.9	1.5	1.7	3.7
2	CONVENTION CENTER	0.76	1.01	1.1	1.2	1.4	1.9	1.5
3	COURTHOUSE	0.90	1.01	1.1	1.2	1.4	2.0	1.3
4	DINING: BAR LOUNGE/LEISURE	0.90	1.01	1.0	1.3	1.5	2.4	1.6
5	DINING: CAFETERIA/FAST FOOD	0.79	0.90	0.9	1.4	1.8	2.2	2.0
6	DINING: FAMILY	0.78	0.95	0.9	1.6	1.9	2.3	2.2
7	DORMITORY	0.61	0.57	0.6	1	1.5	1.6	1.6
8	EXERCISE CENTER	0.65	0.84	0.9	1	1.4	1.2	1.0
9	FIRE STATIONS	0.53	0.67	0.7	1	1.3		1.3
10	GYMNASIUM	0.68	0.94	1.0	1.1	1.7	1.1	0.9

220.12 Lighting Load for Non-Dwelling Occupancies.

A) General. A unit load of not less than that specified in Table 220.12 for non-dwelling occupancies and the floor area determined in 220.11 shall be used to calculate the minimum lighting load. Motors rated less than 1/8 HP and connected to a lighting circuit shall be considered general lighting load.

Informational Note: The unit values of Table 220.12 are based on minimum load conditions and 100 percent power factor and may not provide sufficient capacity for the installation contemplated.

(B) Energy Code. Where the building is designed and constructed to comply with an energy code adopted by the local authority, the lighting load shall be permitted to be calculated using the unit values specified in the energy code where the following conditions are met: 1. A power monitoring system is installed that will provide continuous information regarding the total general lighting load of the building.

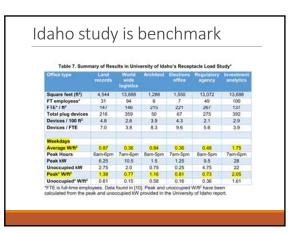

2. The power monitoring system will be set with alarm values to alert the building owner or manager if the lighting load exceeds the values set by the energy code. Automatic means to take action to reduce the connected load shall be permitted.

3. The demand factors specified in 220.42 are not applied to the general lighting load. 4. The continuous load multiplier of 125 percent shall be applied.

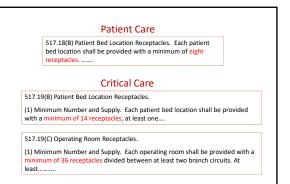
	Unit Load			
Type of Occupancy	Volt-amperes/m ²	Volt- amperes/ft ²		
Automotive facility	<u>16</u>	<u>1.5</u>		
Convention center	<u>15</u>	1.4		
Courthouse	<u>15</u>	1.4		
Restaurants ⁴	16	1.5		
Dormitory	<u>16</u>	1.5		
xercise center	15	1.4		
ire station	14	1.3		
iymnasium ³	18	1.7		
lealth-care clinic	17	1.6		
lospital	17	1.6		
lotels and motels, including apartment houses				
vithout provision for cooking by tenants ⁶	18	1.7		
ibrary	<u>16</u>	<u>1.5</u>		
Manufacturing facility	24	2.2		
Notion picture theater	<u>17</u>	1.6		

Museum	<u>17</u>	<u>1.6</u>				
Office ¹	14	<u>1.3</u>				
Parking garage ⁸	3	<u>0.3</u>				
Penitentiary	<u>13</u>	<u>1.2</u>				
Performing arts theater	16	<u>1.5</u>				
Police station	14	<u>1.3</u>				
Post office	17	<u>1.6</u>				
Religious facility	24	2.2				
Retail ^{5, 7}	20	<u>1.9</u>				
School/university	<u>16</u>	<u>1.5</u>				
Sports arena	16	1.5				
Town hall	15	<u>1.4</u>				
Transportation	<u>13</u>	1.2				
Warehouse	<u>13</u>	1.2				
Workshop	18	<u>1.7</u>				
Notesi J. 2. Industrial Commercial loft buildings are considered manufacturing type occupancies. 3. Armories and Auditoriums are considered Gymnasium type occupancies. 4. Cubs are considered restaurant occupancies. 5. Barber shoes and beauty parfors are considered restauratore. 6. Lodger commission type. 7. Barber shoes and beauty parfors are considered restail occupancies. 8. Barber shoes and beauty parfors are considered restail occupancies. 7. Address commission type. 8. Barber shoes and beauty parfors are considered Parking Garage occupancies. 8. Garages – Commercial (storage) are considered Parking Garage occupancies.						

Determine severity of the gap


WHERE DO WE WANT TO GO?

	Canadi	an Star	ndards /	Associa	tion Prov	vided Da	ta	
Building Type	Building Area (sq ft)	Building Area (sq m)	Calculated load (kW)	Calculated (W/sf)	Maximum measured demand (kW)	Measured (W / sq m)	Measured (W / sf)	Measured as a Percentage of Connected
Retail Warehouse	142,000	13199	1210	8.52	550	40.6	3.79	45.45
Warehouse Distribution	500,000	46475	7800	15.60	2100	44.1	4.12	26.92
Office Building	80,000	7436	880	11.00	700	91.8	8.58	79.55
Church	50,000	4648	500	10.00	250	52.5	4.91	50.00
Retail Store	123,000	11433	1110	9.02	500	42.6	3.98	45.05
Office Space	20,000	1859	400	20.00	150	78.7	7.36	37.50
Restaurant	30,000	2789	700	23.33	450	157.3	14.70	64.29
Grocery Bulk Food Retail A	4,600	428	96.065	20.88	35.78	83.68164174	7.82	37.25
Grocery Bulk Food Retail B	4.819	448	93.579	19.42	43.2	96.44384312	9.01	46.16
Quick Service Restaurant	2.400	223	185.112	77 13	55.4	248 3397333	23.21	29.93


NEC Example Data										
Description	Location	ft²	HVAC system	Actual Demand	Demand kW/ft2	Calculated Load	Connected Loac kW/ft2	Measured as a Percentage of Connected		
Police Station	кү	22,400	VRF	76,300	3.4	277330	12.38	27.46%		
Office Building	NJ	250,000	Chiller	1,550,000	6.2	3,706,000	14.82	<mark>41.84%</mark>		
Bank	кү	42,535	VRF	161,800	3.8	453,990	10.63	<mark>35.75%</mark>		
Bank	ОН	3,500	Split Systems	20,250	5.79	88,000	24.65	<mark>23.49%</mark>		
Office Building	он	160,000	Water Source Heat Pump	680,000	4.25	2,135,000	13.34	31.86%		
Bank	In	3282	Split Systems	12,800	3.9	54,000	16.45	<mark>23.71%</mark>		

	•			Load Office S	
Office Location	Irvine CA Site 1	Irvine CA Site 2	Rosemead CA	Los Angeles CA	Vancouver BC
Square feet (ft ²)	8,328	1,500	16,500	8.024	9,000
Lighting Average Daytime W/ft ²	0.2	0.4	0.5	0.3	0.5
Plug Load Weekdays					
Average Daytime W/ft ²	0.8	0.8	0.5	1.5	0.6
Peak W/ft ²	1.6	1.8	0.7	2.1	0.8
Average Night W/ft ²	0.4	0.6	0.3	1.46	0.3

Tuble Thing and Trocess Loud	Power Densities of Ten	Office Buildings
Office Building Type	Area (square feet)	Average (W/ft ²)
Multi-tenant with data center	50,725	1.17
Multi-tenant with data center	365,000	0.19
Multi-tenant with data center	191,799	0.37
Multi-tenant	173,302	0.49
Municipal	172,000	0.40
Single tenant with warehouse	94,621	0.19
Single Corporate tenant with data center	97,500	0.58
Single Corporate tenant with data center	195,721	0.36
Single Corporate tenant with kitchen	91,980	0.64
Single Corporate tenant with laboratories	222,616	2.27

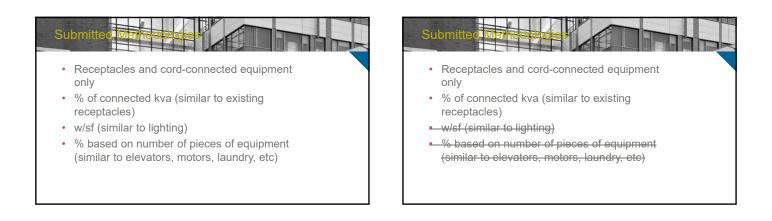
Column1	Land Records	World Wide Logistics	Architect	Election Office	Regulatory Agency	Investment analytics
Square Footage	4544	13688	1288	1550	13072	13688
No of Receptacles	216	359	50	67	275	392
NEC Calculation	38880	64620	9000	12060	49500	70560
NEC Demand Calc	24440	37310	9000	11030	29750	40280
Receptacle watt/sf	5.38	2.73	6.99	7.12	2.28	<mark>2.94</mark>
Actual Peak Loading	1.38	0.77	1.16	0.81	0.73	2.05
Percentage Difference	290%	254%	502%	779%	212%	44%
Percentage Difference	290%	254%	502%	779%	212%	<mark>44%</mark>

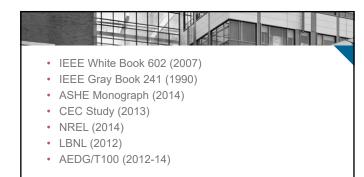
Hospital ID	Building Area (sq ft)	Building Area (sq m)	Calculated load (kW)	Maximum measured demand (kW)	Measured (W / sq m)	Meaured (W / sf)				
Hospital Site A	720,000	66924	<mark>4000</mark>	3817	57.03	5.29				
Hospital Site B	312,000	29001	1792	2100	72.41	6.71				
Hospital Site C	1,200,000	111541	N/A	8,515	76.34	7.08				
Hospital Site D	710,000	65995	N/A	4,112.40	62.31	5.78				
Hospital Site E	864,918	80395	N/A	4,279	53.22	4.93				
Hospital Site F	148,229	13778	N/A	903	65.54	6.07				
Hospital Site G	2,757,178	256281	N/A	14,728	57.47	5.33				
Hospital Site H	1,022,084	95003.34622	N/A	6,835	71.94	6.67				
Hospital Site I	1,351,390	125612.5446	N/A	7,083	56.39	5.23				
Hospital Site J	680,581	63260.42906	N/A	3478.098	54.98	5.10				

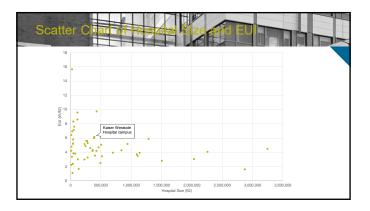
CUFANCI	DEVATIVENT	NODEL THYES	8440	NOOR ANDA SERVED (SF)	CONNECTED LOAD (CIA)	NEC LOAD (KVA)	NEAUURIS PENEIDAG (KYA)	HECHT OHENCE HOM COVIETED 1040	MAZITI METHOD 1 AGONEATI (FUN)	MAZETTI METHOD Z DASOV)	NEAGURED PEAK 1540 (14474)	HIRDRY DIVITION FROM MITHOD
	KU Patient Wing	KU Patient Rooms	Ottal	1.045	32.52	21.96	634	295	12.98	2.77	1.24	SIX
	CU Patient Wing	ICU Patient Rooms	Normal	5.06	29.52	19.76	2.78	9%	12.38	. 145	0.55	78%
	Emergency Department	Treatment Rooms, Trama Rooms, Nume Stations	Critical	2,720	29.8	15.9	2.17	7%	12.95	4.76	0.80	82N
	Emergency Department	Treatment Rooms, Trama Rooms	Normal	3,600	28.08	19.04	2.17	85	12.82	3.34	0.60	82%
	imaging	Hot Lab, Testing Rooms, Nurse Station, Holding Area, CT Scan, Radiographic Scan, Fluorescopy	Critical	1,650	26.42	18.27	7.23	276	11.69	3.20	1.98	385
	Imaging	CT Scan, MRI Scan	Critical	1,580	7.26	7.26	1.90	265	6.0	4.07	1.20	71%
	inapig	Radography, ELG, Office, Workrooms, Corridors	Normal	1,125	33.07	22.36	5.95	385	343	4.30	1.79	SRN
	Inaily	Testing Rooms, Staff Lounge, Staff Locker, Workrooms, Office, CT Scan	Normal	3.300	32.57	21.28	7.68	24%	13.34	138	2.33	425
	Sugery	Surgery Sterilization	Equipment	590	2923	29.23	5.92	20%	28.71	4.56	10.0	79%
	Surgery	Offices, Lacker Rooms, Workrooms, Medical Equipment Storage	Normal	4,700	28.17	19.45	3.65	13%	12.58	2.68	0.78	71%
Hospital	Sugary	Exam Rooms, Offices, Waiting Area, Medical Squipment Storage, Worksooms	Normal	2,615	28.43	1821	334	135	12.11	455	16	85
ž	Surgery	Seep Rooms, Workrooms, Medical (ouipment Storage	Normal	3,000	25.42	17.71	3.41	13%	11.36	3.79	154	725
	Sutery	Patient Holding and PACU	Otical	2,788	18.18	14.09	3.85	21%	9.55	3.0	138	60%
	Surgery	Patient Holding and Nurse Stations	Otical	3,485	24.16	17.08	6.14	25%	11.04	3.17	1.76	44%
	Surgery	Procedure Room	Critical	305	9.14	9.34	3.29	36%	7.57	24.82	30.80	56N
	Sutery	Patient Holding and PACU	Normal	3,660	24.48	17.34	2.89	12%	11.12	3.04	0.79	74%
								_				_

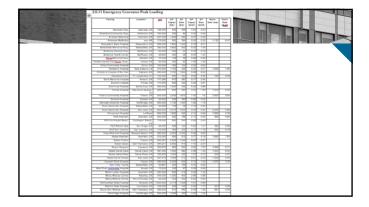
Task Group additions

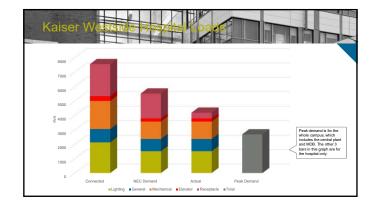
 Kevin Van Den Wymelenberg, Univ of Oregon, Director of Energy Studies in Buildings Lab


- Sean Denniston, Senior Project manager, New Buildings Institute
- Paul Torcellini, National Renewable Energy Laboratory
- Eric Richman, Chairman of ASHRAE 90.1 Lighting and Power

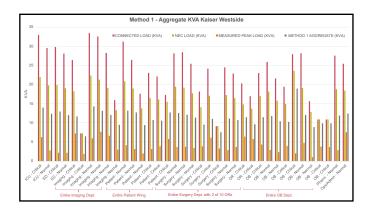

Other Areas of Review


- Smaller homes. Provisions for homes less than 800 s.f.
- Clean up nomenclature in Article 220
- Possible grouping of load calculations by occupancy categories for usability. I.E. office buildings, hospitals, hotels/motels, etc.
- Should 125% be used for continuous loads for service conductors
- Table for receptacle loading based on Watts/sf for services.
- Removal of show-window and track-load requirement
- Net Zero Buildings

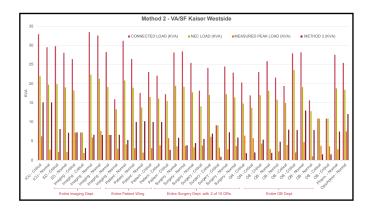


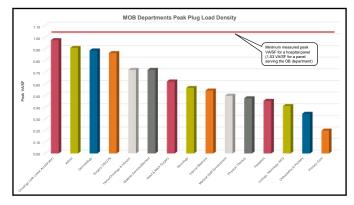

	Thear		Degree	Days		Wn_	
54	Area				Principal		
Boopital and Location	(1)	Beda	Cooling	Beating	Fael	Maximum	
Pa - East	373 000	678		3939	ACTO	6.8	
#a - Southrast	358 000	\$20	2204	2040	ACTO NOTO	6.3	
R1 - Gentral	13 000			-		73	
#4 - Central	36 365	6.2	2025	3197	1. 1.	0.5	
#5 - Central	Jan ooo		***7	glob	AGEO	4.6	
76 - Southeast	100.000	215	3586	109	NCT0	5.3	
P2 - Rast				1207	ACTO		
#8 - Reachment	135 3 96	600	2000	after	2640	6.6	
Pg = West	190.000	97	9*7	5983	ACAO	1.8	
fan - Seathraat	ofer once	100	3005	233	AGTO	6.3	
Pa - Southrast	67639	944	100	arte	NGTO	23	
day - Readbarast	else alty	222	E2+4	agin a	8640	4.3	
Pal - East	100.60	695	1030	4147	ACTO.	1.7	
dag - Kaut	76 000	-53	1000	4342	L.	8.8	
Pall - Southeast	-05 da	-7-	725	9517	AGE0	5.9	
Auf Neuritment	13.76g 23.76g	131	258.7	2352	NGTO .	24	
Pag - Control	7-749	198	+636	33+3	NGTO	6.3	
#a8 - Northwest	125 000	20	24	5433	NGTO	4.4	
Pag - Central	54 978	++8	- fol	36.96	E	67.3	
#so = West	144 0000	dea	184	1)Sa	NGTO	43	
Ray - New Beast	+15 000	143	1458	1425	NCTO	45	
#ss = Central	89.000	105	2003	3102	L.	8.4	
#43 - Central	108 200	600	1197	4799	NCTO.	6.5	
Ang - West	133 169	100	947	5983	NGTO	4.2	
Fa5 - Southeast	84 000	415	1013	9455	NCTO	6.5	
#16 - Noutheast	83.10	105	3005	233	NGTO	8.5	
Ran - Central	21 000	92	-054	3.658	NCTO.	1.8	
#58 - Noutheast	66 Suit	1210	1919	94.9	L.	9-2	
Page - East	10.000	100	1794	30+4	E	4.3	
43a - Central	202.000	Ecc.	+635	35-3	NGTO	4.8	
#31 - Southeast	56	24	3186	200	NCTO.	24	
73a - West	57.531	50	927	5983	NOTO	1.0	
733 - Gentral	+3 #35	34	100	36.46	E	10.8	
734 - Nautheast		60	1916	1955	NOTO	8.3	
735 - West	48 5-5	60	3+6+	118	NCTO.	2.2	
716 - Apathwood	also man	185	1.64	-14-	No. PO	6.3	
73n - Gentral	41 815	66	field	36.46		4.5	

<u>Table</u> 2-3 – Se	ervice ent	rance	peak den	and (De	partment o	of Veterans	Affairs
	Floor		Degree	e Days ^b		W/ft	2 d
	Area				Principal ^e		
Hospital	(ft ²)	Bedsa	Cooling	Heating	Fuel	Maximum	Average
V.A. Hospital #1	821 000	922	234	3536	NG/FO	4.5	3.5
V.A. Hospital #2	334 000	500	863	5713	NG/FO	5.2	3.9
V.A. Hospital #3	645 995	670	3488	1488	NG/FO	3.8	2.8
V.A. Hospital #4	681 000	600	1016	654	NG/FO	6.I	4.0
V.A. Hospital #5	503 500	697	3495	841	NG/FO	7.2	5.5
V.A. Hospital #6	800 000	1050	600	7400	NG/FO	5.9	4.2



2.6.9 Kaiser Service entr	rance pea	ak demand table	(1998-2001)
Location	8st	Peak Demand, 1998 - 2001	
		kw	w/sf
Vallejo, CA	217,839	1,935	8.88
Richmond, CA	95,100	762	8.01
South San Francisco, CA	114,436	1,295	11.32
Santa Clara, CA	385,790	1,632	4.23
San Jose, CA	226,041	1,352	5.98
South Sacramento, CA	214,253	1,896	8.85
Sacramento, CA	309,499	2,380	7.69
Roseville, CA	282,016	2,350	8.33


I

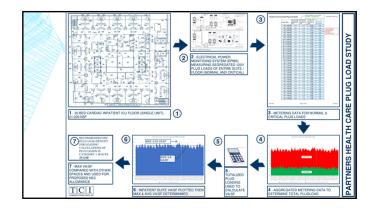


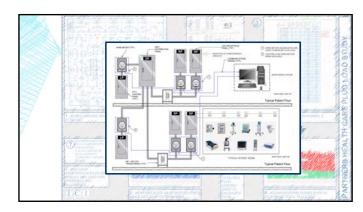
		Та	ble 2-1	, Sampl	e MOB I	.oad/cir	cuit da	ita		
MOB	sf	480 v poles	480 V spares	480 V spaces	480 V Poles/sf	208 V poles	208 V spares	208 V spaces	1.000	8 V les/sf
I	54,000	258	91	66	0.004778	848	161	98	0.0	015704
2	32,430	54	9	12	0.001665	394	72	27	0.0	012149
ave	43,215	156	50	39	0.003221	621	116.5	62.5	0.0	13926
MOB	sf	Ltg (va)	(va/sf)	Summing .	receps (va/sf)	equip (va)	equip (va/sf) (<u>va</u>)		HVAC (va/sf)
I	54,000	144,725	2.68	429,371		283,600				3.6606
2	32,430	33,010	1.02	117,800	3.6324	159,010	4.903			2.7616
ave	43,215	88,867	1.85	273,586	5.7919	221,305	5.077	5 143,6	15	3.2111

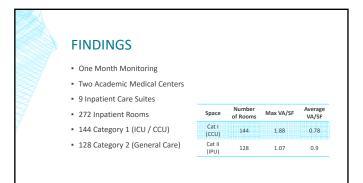
NFPA 70 Att Method 1	iele Modificatio	Is Seconds							
	New Section								
	517.22 Health Care Facilities, Rating of feeders, busses, transformers, penetrators, and services shall be calculated in accordance with Table 517.22, with respect to receptacles and cord- connected equipment.								
	Table 517.22 Receptacle Outlet and Demand Factors for Health Care Fac								
	Portion of Receptacle Load to Which Demand Factor Applies (Volt-Amperes)	Which Demand Factor Applies Demand Factor (%)							
	First 5.0 kVA or less at	100							
	Second 5.0 kVA to 10 kVA at	50							
	Remainder over 10 kVA at	25							

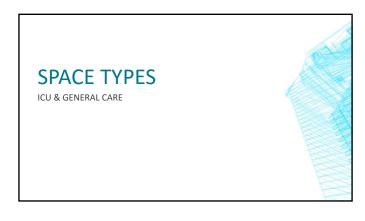
Meth	v 70 A nticle M od 2	och catons	Sector -	P						
	New Section									
			ers, generators, and services shall be							
		calculated in accordance with Table 517.23(A), with respect to receptacles and cord-connected equipment.								
	Table 517.23(A) Receptacle Outle	Table 517.28(A) Receptacle Outlet Loads and Conl Connected Equipment for Health Care Facilities								
		Receptacle Outlet and Cord Connect	ed Loads by Occupancy							
	Type of Occupancy		Unit Load Volt-amperes/ft ²							
	Type of Occupancy	Volt-amperes/m ²	Unit Load Volt-amperes/ft ² 3.00							
	Type of Occupancy Category 1 (Critical Care)	Volt-amperes/m ² 32.30	Volt-amperes/ft ²							
	Type of Occupancy Category 1 (Critical Care) Category 2 (General Care)	Volt-amperes/m ²	Volt-amperes/ft ² 3.00							
	Type of Occupancy Category 1 (Critical Care)	Voll-amperes/m ² 32.30 21.50	Volt-amperes/H ² 3.00 2.00							

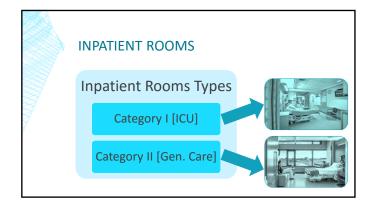
Summary			
Space	TCI Max VA/SF	Mazzetti Max VA/SF	Proposed NEC VA/SF
ICU	1.88	1.79	3.00
General Inpatient	1.07	1.23	2.00



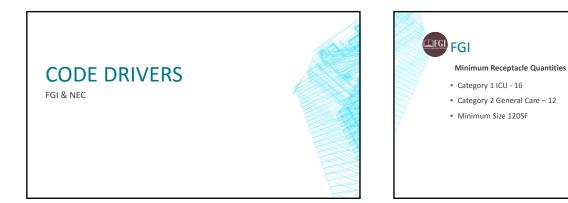



PARTNERS HEALTHCARE


- PHS BOSTON BASED
- 16M SF HOSPITALS
- 14 MEMBER HOSPITAL SYSTEMS
- TWO 'TOP 10' ACADEMIC MEDICAL CENTERS
- FOUNDING HOSPITALS MGH, BWH
- STAFF: 73,000

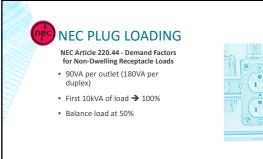


INPATIENT ROOM TYPES

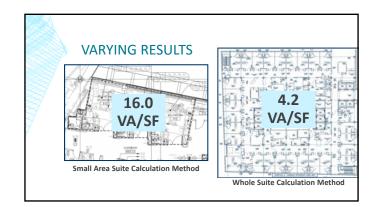

Category I – Critical Care

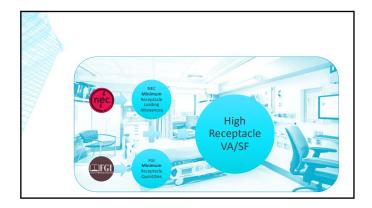
- Sickest Patient Population
- Major Organs Compromised Supplemental Equipment Req'd
 - Ventilators
 EEG / EKG

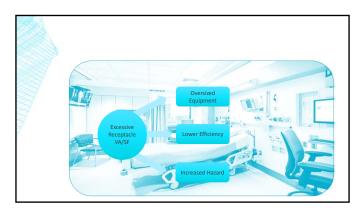
 - IABP
 Many Infusion Pumps Hemodynamic Monitoring
 - HR / Respiratory Monitoring
- High Staff / Patient (1:1 or 1:2)
- More support Equipment (Work Sta)

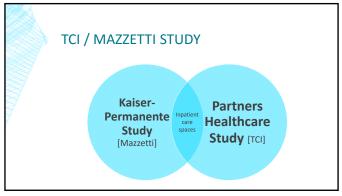

Category II – General Care

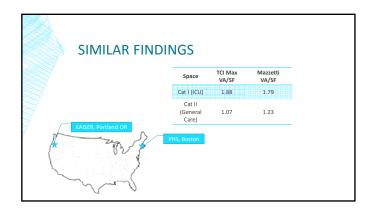
- General Recovery
- Low Acuity
- Minimal Equipment
- General Monitor
- Few (if any) Infusion Pumps
- Lower Staff / Patient (1:4 to 1:6)
- Less Support Equipment











	ESU	JLT	S				
	inde:		lug Load	(kVA)		Total V	A/SF
Clinical Care Hospital 1		Min	Max	Average	Min	Max	Average
Nero Intensive-Care Unit (28 Beds)	22609	16.25	42.5	33.19	0.72	1.88	1.47
General Care Patient Room (32 Beds)	23857	8.75	22.50	16.94	0.37	0.94	0.71
General Care Patient Room (32 Beds)	23423	12.50	25.00	23.06	0.53	1.07	0.98
General Care Patient Room (32 Beds)	23476	8.75	23.75	21.36	0.37	1.01	0.91
General Care Patient Room (32 Beds)	23268	10.00	25.00	23.51	0,43	1.07	1.01
Table 6: Hospital 1 Min, Max, Avera	ge meter	ed data	summar	v			
Kalendari da serie d			Plug Loa	d (kva)		Total \	A/SF
Clinical Care Hospital 2		Min	Max	Average	Min	Max	Average
Cardiac Intensive Care Unit (29 Beds)	21691	2.58	20.23	16.75	0.12	0.93	0.77
Cardiac Inpatient Unit (29 Beds)	21544	8.74	13.57	10.42	0.41	0.63	0.48
Cardio Vascular Surgery Suite (29 Beds)	21966	1.18	12.76	9.93	0.05	0.58	0.45
Cardiac Critical Care Unit (29 Beds)	21855	1.77	20.01	15.77	0.08	0.92	0.72

2018 NFPA Research Fund Review - Electrical

	Reviewer: Combined List					
	Rating = 1 to 5 (5 is highest); Rank = 1 to 12			AVERAGE		
		Technical	Magnitud	Sense of	Success	
ID#	Title	Relevance	e	Urgency	Liklihood	
1004	CECIa in Manina a	4.0	ГО	4.0	1.0	

OVERALL

	ID#	Title	Relevance	е	Urgency	Liklihood	Total		RANK		
4	1604	GFCls in Marinas	4.9	5.0	4.8	4.6	19.3	\bigcirc	2.6	\bigcirc	
11	1880	Marina Elec Equip Harvesting	4.6	4.7	4.7	4.5	18.6	\bigcirc	3.5	\bigcirc	
1	1601	Modelling Shock in Water	4.8	4.8	4.5	4.1	18.1	\bigcirc	3.8	\bigcirc	
8	1803	Residential Electrical Fire Data	4.5	4.5	4.3	3.9	17.2	\bigcirc	3.9	\bigcirc	
3	1603	GFCI Limitations	4.6	4.0	4.0	4.6	17.2	\bigcirc	4.0	\bigcirc	
12	1881	Pool Corrosion	3.8	3.6	3.2	3.9	14.4		5.9		
5	1623	Interoperability	3.3	3.3	3.3	3.3	13.2		7.0		
2	1602	Low Voltage Cable Impedence	2.8	3.3	3.0	3.0	12.2	\otimes	8.4		
7	1719	Fire Resistance Rating of Concrete	3.3	2.5	2.1	3.6	11.4	\otimes	8.6	\otimes	
9	1813	Arc Flash Modelling	4.4	4.1	4.1	4.1	16.8		8.7	\otimes	
6	1718	Elec Grounding in O2 Atmosphere	3.0	2.7	2.7	3.3	11.8	\otimes	9.5	\otimes	
10	1821	Power Transmission Anti Icing	2.6	2.4	2.3	2.5	9.8	\otimes	10.1	\otimes	
		Additions:	I								
	1819	Hospital Energy Use					0.0				
	1015	Hospital Lighting					0.0				
		Power Over the Ethernet					0.0				
		Adoption Protocol Summary					0.0				
		Equipment Supports for FF Acccess					0.0				

Comments:

Note: Ranking based on review at ESRAC Meeting on 13/Jan/2018, with 21 forms returned.

1601 (1) Applicable to any body of water covered by the NEC; (2) Too many deaths

1602 (1) Questionable outcome impact

1603 (1) Important to expanded requirements

1604 (1) Assess solutions to urgent problem; (2) Too many deaths

1623 (1) Keep NEC/NFA 72 ahead of curve

1718 (1) Not urgent NEC topic

1719 (1) Issue seems to have had reduced discussion

1803 (1) Important to moving AFCI &GFCI protection; (2) Are AFCI's effective? (3) May require longer time frame;

1803 (4) Set-up data acquisition going forward; Have much more granularity; Include AFCI & GFCI information

1813 (1) Scope creep to IEEE/NFPA project

1821 (1) More utility oriented

1880 (1) Related to #1604; (2) Too many deaths;

1880 (3) Most important issue to address, and no one else will; People are dying

1881 (1) Electricity / water interface