

EPA Clean DG Policy and CHP Webinar Series

The Role of CHP in a District Energy Setting

Sustainable Energy at Cornell Aiming toward a Climate Neutral Future

W.S.(Lanny) Joyce, PE, CEM Director, Energy Management Cornell Energy and Sustainability

> May, 2010 Facilities Services

- Cornell energy overview fast!
- Sustainable supply side energy projects
- CCHPP at Cornell
- Climate Action Planning
- What might be in our future for climate neutrality?

Ithaca Campus Utilities

- 115 kV electric substation
- Central heating with cogeneration of electricity
- Central cooling (chilled water) with LSC
- Water Filter Plant
- Hydroelectric Plant
- Fully metered

Large utility user due to research mission \$~65 million per year total cost

Existing Utility Infrastructure Loads			
Utility	Average	Peak	Units
Electric	28	35	MW
CHP	125	375	klbs/hr
CWP	4,500	20,000	tons

Annual energy purchases nearly flat since 1990 due to conservation

Sustainable Supply Side Energy at Cornell

- Cogeneration
- Hydroelectric plant
- Lake Source Cooling
- Combined Heat and Power

Co-generation

- 30 million kW-hr/year or 12 % of campus
- Built in 1986, 8000 kW total
- Two back pressure steam turbines

Hydroelectric Plant

- 5 million kW-hr/yr or 2 % of campus
- Rebuilt 1981
- Controls upgrade in 2008 increased annual production by 20%

- Lake Source Cooling (LSC)
- Started service 2000
- Annual production at 0.1 kw/ton (86% savings)
- Truly "renewable" cooling

- Full automation (un-peopled)
- Saves over 25 million kwh/yr
- District cooling system is CFC free

Lake Source Cooling Energy Savings

Positioning the 63" OD Intake

Heat Exchangers and Chilled Water Pumps

Combined Heat & Power Project

Project Scope
 Two (2) combustion turbines (15,000 kW x 2)
 Produce ~ 70% of kWh

- Heat Recovery Steam Generators (HRSG)
 Produce ~ 50% of steam unfired, up to 90% fired
- Substation renewal
- Project cost ~ \$82 Million
 > Bldg addition at heating plant

Analysis and decision on CCHPP

- Energy and economic analysis over 25 years
- Options studied included peaking boilers (base case), ACFB coal, biofuel, combustion turbine/HRSG
- CT/HRSG won due to lowest life cycle cost, fuel flexibility, reliability, emission reduction
- Next to highest capital cost
- Combined with substation upgrade

Annual Cost Comparison

Project Development and Delivery

- Owner financed, local IDA bonding
- Owner developed and managed construction
- CT/HRSG and all major equipment pre purchased and assigned to contractor
- Four major construction contracts
- One engineer, one permitting consultant
- Owner commissioning, training, operation

Combined Heat & Power Project

Project benefits:

- Highly efficient (70%+)
- Electrical reliability
 - "Islanded" operation
- Emissions reductions
 - CO2 70,000 tons/yr (25+% of "total")
 - NOx 250 tons/yr
 - SO2 800 tons/yr
- Fuel flexibility and lowest life cycle cost

In service Dec 2009

Dedicated gas line

- 3.2 miles, 8" diameter, 600 lbs, Class 4 designation
- Interconnection with Dominion Transmission Inc.
- Certificate of Environmental Compatibility & Public Need
 NYS Public Service Law, Title 16 (Article VII)
- 15,000 Dtherms/day firm (15 year special rate)
- 24,000 Dtherms/day capacity

Equipment Setting 10/08

Inside the New Plant 12/09

Outside New Plant

Permitting and Approval Challenges

- University, including debt financing
- Dedicated gas line from interstate pipeline

 Connection and transportation (FERC)
 Pipeline (NYS PSC)
- NYS/EPA air permits and approvals
- Local municipality approvals (town and city)
- Electric interconnection
- Local utility power purchase agreement

Attaining Carbon Neutrality – The CAP

Panel on Climate Change

What might be in our future?

- The CU Climate Action Plan proposes a mix of "engineered geothermal" or EGS, and peaking gasified biofuel for heating with grid purchased electricity by 2030-2040
- Grid purchased electricity in NYS is 60% less than coal now and is headed much lower due to RPS, RGGI, fuel prices, and pending national carbon legislation

What is EGS?

- Utilization of "low" grade real geothermal heat
- Drill well into the "basement" rock
- "Stimulate" the rock
- Drill a second well into the fractured zone
- Circulate water from the surface, through the rock, and back to a surface HX/Power facility

With EGS working at depths to 6 km all of the US becomes a viable geothermal resource

From Blackwell and Richards (June, 2007)

A pathway to sustainable energy from geothermal

Enhanced/Engineered Geothermal Systems (EGS)

EGS defined broadly as engineered reservoirs that have been stimulated to emulate the production properties of high grade commercial hydrothermal resources.

Cornell Energy with EGS

Cornell Energy with EGS and Peaking Biofuel

Questions?

Cornell Contacts:

W.S. (Lanny) Joyce, PE Director, Energy Management LSC Project Manager wsj1@cornell.edu 607-255-6631

Tim Peer, PE Energy Plant Manager CCHPP Project Manager tsp1@cornell.edu 607-255-9968

Jim Adams Director, Utilities jra4@cornell.edu 607-255-6648

Day Hall Solar PV 15 kW peak output December 2006

