

Transformer Protection

Transformer Protection Outline

- Fuses
- Protection Example
- Overcurrent Protection
- Differential Relaying
 - Current Matching
 - Phase Shift Compensation
 - Tap Changing Under Load
 - Magnetizing Inrush
 - Overexcitation
 - Connection Examples
 - Ground Differential
- Sudden-Pressure Relays (63)

Power Transformer Failure Statistics 1955 - 2002 (3,112 failures)

Winding failures	= 31%
Tap changer failures	= 26%
Bushing failures	= 12%
Cooling equipment failures	= 3%
Auxiliary equipment failures	= 3%
Core failures	= 1%
Leads failures	= 1%
Other failures	= 23%

Source: IEEE C37.91-2000

Transformer Fusing

- Normally used at 10MVA and below
- Reference transformer damage curves IEEE C37.91
- Selected to fit below damage curve
- Fuses must be coordinated with relays
- Economical

Fuse Characteristics

Example: Large Industrial Load

Transformer Overcurrent Protection

High side overcurrent will not see low side ground faults.

High Side Overcurrent

- Coordinate with upstream devices
- Backup transformer differential / sudden pressure
- Thermal overload
- Set above Inrush, 2-8 X Load

Low Side Overcurrent

- Coordinate with downstream devices (radial)
- Bus backup scheme
- Thermal overload

"Frequent" and "Infrequent" Operating Limits

TIME (SECONDS)

Transformer Monitor (51TF)

=

Transformer Monitor (51TF)

_

Transformer Differential Relays

- Faster
- More sensitive
- Eliminates single phasing problem
- More selective

Percentage Differential

Percentage Differential Characteristic

MAXIMUM RESTRAINT CURRENT (IN MULTIPLES OF TAP)

Transformer Differential Limitations

- Unequal secondary currents, because of the different turns ratios of the power transformer windings and the CTs
- Phase shift of wye-delta banks
- Tap changing under load
- Magnetizing inrush

Current Matching

Current Matching

Phase Shift Compensation

Ē

Two Kinds of Delta Connections

Percentage Differential Characteristic

MAXIMUM RESTRAINT CURRENT (IN MULTIPLES OF TAP)

Basler

Tap Changing Under Load

Magnetizing Inrush

Transformer Deenergized at This Point Transformer Reenergized at This Point

Magnetizing Inrush

Inrush Waveform

Unbalanced Inrush

Transformer Energization Circuit 1 Currents vs Time

- If the transformer connection is a delta-wye the angles of the two currents will not be 180 degrees apart, and must be compensated by 30 degrees
- To compensate with the CT connection, reverse the connection; for delta-wye transformers connect the CT's wye-delta
- Digital relays can be connected wye-wye and set the compensation inside the relay

Ratio of taps=Ratio of currents

- Set slope low for low mismatch and high quality CTs
- Increase slope setting for tap changer transformers, poor quality CTs or poorly matched CTs
- Use of transient monitor to detect the effect of CT saturation during through-fault => enhance security

 Use of 2nd harmonic sharing for 2nd harmonic inhibit => Superior method to enhance security

Overexcitation

S - POWER SYSTEM

Relay restrains over the voltage range of 104-138% of rated excitation

Bus/Transformer Application

Bus/Transformer Application

CT Error Produces Incorrect Operation

Ground Differential

Neutral Overcurrent

Sudden Pressure Protection

- Operates on rate of change in gas or oil pressure
- Detects incipient low magnitude faults
- Protects for faults differential may not see
- Backs up differential for high magnitude internal faults
- Users are split between using sudden pressure for trip or alarm

Sudden Pressure Relay Mounted in Gas Space

- SUDDEN PRESSURE RELAY
 TRANSFORMER TANK
 INSULATING OIL LEVEL
 MAIN PORT
 BELLOWS
 GAS CUSHION
 SNAP SWITCH
- **8 EQUALIZER PORT**

