Automation in the Days of the Software Network

Diego R. Lopez
Telefonica I+D

IEEE ETR-RT. Masala, August 2019
The Automation Target

- The main raison d'être for all efforts around Software Networks
 - Elasticity
 - Homogeneity
 - Programmability
 - Abstraction
- In a changing network landscape
 - Pervasive encryption
 - Internet stack evolution
 - And the advent of 5G
The Complexity Challenge

- Networks becoming increasingly complex
 - 5G foresees a x10 densification of sites compared to 4G
 - Best user experience demands heterogeneity in access technologies
 - Multiple coexisting RATs (2G/3G/4G and 5G), creating interoperability challenges
- And not suitable to be managed using traditional operation
 - Virtualization
 - Efficient orchestration
 - Towards zero-touch service management
 - Adapting results from the IT experience
 - And exploring new paths
The Ossified Network

- Many complex functions
 - Baked into the infrastructure
- Pervasive standardization
 - Much beyond a lingo for interoperability
 - Limit differentiation
- An industry with a “mainframe-mentality”
 - Reluctant to change
 - As a whole
 - A path of lowest resistance for all actors
The Momentum of Software Principles

- Software Networks allow for applying IT and software engineering principles to networks
 - Compositional mechanisms
 - Model-driven development and management
 - DevOps and continuous integration
 - Integrated environments
 - Cognitive methods
 - . . .
The Role of Virtualization

- **NFV**: Separate functionality from capacity
 - Increase network elasticity
 - Address heterogeneity

- **SDN**: Decouple the control and forwarding functions
 - Gain programmability
 - Abstract infrastructure
Design Principles for an Evolutionary Approach

- **Elasticity**
 - Automated deployment and management
 - Evolve towards Zero Touch and E2E network parametrization

- **Common shared infrastructure**
 - Telco grade
 - Agile and open to innovation

- **Cloud nativeness**
 - Lightweight and highly distributed
 - As-a-service
 - Infrastructure
 - Transport
 - Platform
Model-Based Network Orchestration and Management

LOCAL DEVELOPMENT & TESTING
- Open development environment
- Functional tests
- Low cost
- Integration from the beginning

TEST POOL FOR DEVELOPERS
- Real servers and switches
- Performance tests (EPA can be enforced)
- Cost-effective shared infrastructure
- Move the value to VNF services

SERVICE PROVIDER
- Production/pre-production environment
- Real network scenarios
- Final service configuration
- Fast deployment
- Low final integration cost

Applying network-aware CI/CD principles
- Development and testing
- Deployment description and sharing
The Integration Goal

- Tenant controllers define the forwarding rules for VNFs
 - Service chaining
 - Identity-based services
 - On-demand provisioning
 - OSS integration
 - BSS becomes a SDN application
- Several tenant controllers may interact with the same infrastructure controller
 - Conflict resolution has to be addressed
 - Tenant identity must be exchanged to apply policies
- Support for network slicing
 - Relaying on SDN composition
Micro-Serviced NFV

- Oblivious components
 - Supported by connecting tiers of nodes
 - And platforms
- Requiring
 - Node discovery
 - Load-balancing
 - Retry on failure
 - Overload detection
 - Security
- Ongoing work
 - Service meshes: Istio, NSM…
 - More radical approaches based on RINA

- A few challenges
- Topology awareness
 - Within the service
 - At the attachment points
- The conservation principle
 - Data plane performance
- Openness
 - Functional and operational
- Integrity and auditability
 - Trusted paths
- Isolation
 - Beware the noisy neighbors
The Promise of Programmable Planes

• A generalized approach to virtualization
 o Homogeneous (not unique) infrastructure
 o Full programmability
 o Infrastructure offloading

• Addressing the performance issue
 o Supporting integral orchestration
 o Incorporate whitebox approaches

• A convergence path
 o Manage software images
 o Connect with intent approaches
The Essential Closed Loop

- Not a radical change
 - AI as a tool to improve policy enforcement
 - Apply extended capabilities, but do not expect Skynet

- The key issues are not in the engine(s)
 - But in the data and action flows
 - Including distribution and placement of the engine(s)
At Any Layer and Segment
The Data Stream

- No matter how intelligent: Crap in means crap out
 - Usable: Adaptation (formats, scales…)
 - Sufficient: Topology (sources, aggregators…)
 - Safe: Provenance (origin, timestamps…)
 - Steady: Continuity (pace, availability…)
- Not just data
 - Metadata becomes essential, including semantic mappings
 - What seems to claim for a data stream ontology
 - Not that far away: data modeling is a first step
- An enhanced data fabric seems the logical approach
 - Supporting resource, orchestration and function sources
 - Combining current network monitoring tools and recent telemetry developments
The Action Stream

- OAM actions at a wide variety of different domains
 - Challenging, given the current state-of-the-art
- Initial strategies
 - Domain specific
 - Recommendation systems
 - Autonomic protocols
- Capability models
 - Reusable functionality description
 - Abstractions of network element functionalities usable as building blocks
 - Combined to provide more powerful features
 - Registration mechanisms to support CI/CD
 - Inter-domain collaboration for E2E management
The Human in the Loop

• The dialectic way
 o Thesis: Translate intent into action
 ▪ Understanding intent statements
 ▪ Mapping onto technologies
 o Antithesis: Support environment constraints
 ▪ Policies provided by network management
 ▪ The archetypal SLA enforcement
 o Synthesis: Conflict resolution
 ▪ Among action requests
 ▪ And with management constraints

• Audit track and intelligibility
 o The who, the what, the when
 o And the why
 o Not only as a scapegoat

• And security
 o Deal with adversarial AIs
 o And consider circuit breakers
Trustworthy Datasets

• Lack of usable datasets
 o For training or validation
 o Data as an asset
 o Privacy concerns
 o None or limited tagging

• Generation of synthetic datasets
 o Traffic samples generated in a controlled way
 o Configurable mixes of synthetic and real traffic

• And metadata management
 o Different scenarios, from high loads to security threats
 o Training and validation loops

• Relying on Software Network principles
 o Repeatability and reproducibility
 o Controlled variations
Making Serious Science (and Engineering)

- Independent verification and *reproducibility* are essential to the scientific method
 - “Non-reproducible single occurrences are of no significance to science” (K. Popper)
- Complicated in many cases because different reasons
 - Ethical
 - Nature of the research field
- Recent computing and network results
 - Complexity
 - Disparate conditions
- Corroboration
 - Avoid (un)intentional idiosyncratic results
 - Repeatable results
- Transparency
 - Avoid (un)intentional biases in environment and measurements
 - Repeatable methods
- Robustness
 - Avoid (un)intentional best-of-breed results
 - Repeatable causes
Fitting Pegs and Holes

- Automation as the gist of Software Network technologies
 - Additional degrees of freedom
 - Smoother migration paths
- Elements required for application and interoperability
 - Framework components
 - Stream protocols, APIs and models
 - Topology and knowledge sharing
 - Multi-language, multi-solution, multi-thread...
 - The human in the loop
- We are talking standardization, one way or another
 - Specifications in documents
 - Reference implementations
 - Slowness is in consensus formation
- Avoid re-ossification
 - Keep it ductile/moldable/plastic/elastic/…
HAVE YOU TRIED NOT BEING BORING?

GOOD IDEA. I'LL MAKE FIFTY SLIDES OF PURE EXCITEMENT.