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1. Chair’'s Message

Dear TCCN Fellow Members,

Time goes quickly and it has been six years since I served as the Vice-Chair and then Chair
of TCCN. This will be my last message to you as the TC Chair.

On behalf all the TCCN officers, I would like to take this opportunity to thank all of you
for your strong support of our work during the past two years. I am glad to write to you
regarding some of our recent progress as well as future plans of the TCCN.

The scope of cognitive network is broad, and we have been encouraging colleagues to
establish SIGs (Special Interest Groups) to promote specific research directions within the
TC’s scope. In this newsletter, I would like to share with you the recent progress on SIG for
Al and Machine Learning in Security, which is a valuable venue for professionals interested
in this area.

— Chair: Prof. K.P. (Suba) Subbalakshmi, Stevens Institute of Technology, USA
— Vice-Chair: Prof. Dola Saha, University at Albany, SUNY, USA

The group is responsible for organizing symposiums, workshops, virtual seminars, and
special issues of magazines and journals in this area; influencing telecommunications
standards in the area of cognitive networks; and providing opportunities for networking
between its members. In the past two years, the SIG has become an active and important
platform for TCCN members to exchange research ideas and brainstorm about the future
research directions of the TC.

In addition, we will announce the call-for-nominations for the TCCN Publication and
Recognition Awards for 2022 soon. These are annual awards. The call-for-nominations
usually come out in the summer, and we will announce the awardees at IEEE GLOBECOM
2022.
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The term of the current TCCN officers will come to an end by the end of 2022. We have
formed a nomination committee and announce the call-for-nominations for the officer
candidates. Following the tradition, the voting will be done electronically by all the voting
members of the technical committee. The results will be announced at IEEE GLOBE-
COM 2022. I'look forward to having more energetic and dedicated volunteers joining the
leadership team.

As always, any suggestions from TCCN members are welcome regarding how to make

TCCN a better community. Please feel free to contact me at lingyang.song@pku.edu.cn to
share your thoughts.

Thanks and best regards,
Lingyang Song,
Fellow of IEEE

Chair, IEEE ComSoc TCCN
Peking University, China

Bio: Lingyang Song received his BS from Jilin Uni-
versity, China, in 2002, and PhD from the Univer-
sity of York, UK, in 2007, where he received the K.
M. Stott Prize for excellent research. He worked
as a research fellow at the University of Oslo, Nor-
way until rejoining Philips Research UK in March
2008. In May 2009, he joined the School of Elec-
tronics Engineering and Computer Science, Peking
University, and is now a Boya Distinguished Profes-
sor. He is the co-author of a number of best paper
awards, including IEEE ComSoc Leonard G. Abra-
ham Prize in 2016, IEEE Communications Society
Heinrich Hertz Award in 2021, IEEE ICC 2014, IEEE
ICC 2015, IEEE Globecom 2014. He has served as
a Distinguished Lecturer of IEEE Communications
Society, an Area Editor of IEEE Transactions on Ve-
hicular Technology, an Editor of IEEE Transactions
on Communications. He is a Fellow of IEEE, and
a Clarivate Analytics Highly Cited Researcher in
2018.
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2. Editor’s Note

Cognition for Coexistense
with Passive Users of Spectrum

Author: Prof. Dola Saha,
University at Albany, State University at New York

Albany, NY, USA,
Email: dsaha@albany.edu

The growing need for spectrum to support the next generation (xG) communication net-
works increasingly generate unwanted radio frequency interference (RFI) in protected
bands for passive scientific usage, like radio astronomy and remote sensing [Org20; Nat15].
Radio Astronomy is a discovery-based science, which has revolutionized our understanding
of the Universe through scientific observations across the electromagnetic (EM) spectrum.
Radio Astronomy services (RAS) aims at collecting the faint emissions of distant astronomi-
cal sources at radio frequencies. The sensitivity required to observe astronomical emissions
from Earth is achieved through very low noise amplifier technology, and data observations
over wide bandwidth (100s of MHz) and long integration times (minutes to hours long).
These received emissions are counted in units of Janskys (1 Jy = 1072°Wm~2Hz 1), and are
many orders of magnitudes below the typical transmit power of most active services, which
have the potential to compromise the conduct of an astronomical observation. Similarly,
passive remote sensing detects natural energy radiated or reflected from the scene being
observed. Radiometer is an instrument that measures the intensity of electromagnetic
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radiation, converts that to microwave brightness temperature (BT), which is translated to
measures of various geophysical parameters, like ice cover, soil moisture, sea surface salin-
ity, etc., based on well-established radiative models. Radiometers require high sensitivity,
in the order of 1K (Kelvin) or less. The weakest sources of interference can mask or mimic a
signal of interest, and the strongest can saturate the receivers (amplifier or analog-to-digital
converters) preventing any scientific observations.

This necessitates stringent interference mitigation techniques to continue scientific research
in presence of challenging RFI. Generally, researchers in communication area strive to
reduce noise from artificially generated signal, whereas passive sensing community focuses
on removing communication signals from the scientific signal. This seemingly opposing
requirement is pushing the two communities farther away. Both communities use the
electromagnetic spectrum, one for transmission to keep people connected in a virtual world,
the other for understanding the Universe through the RF window. Both are equally essential
and are designed to overcome a common bottleneck: Interference. Hence, it is crucial for
future cognitive communication networks [Mit00] to address this issue and improve its
cognition capabilities beyond detection and avoidance of primary users to morph the RF
environment for coexistence with passive users. The rest of the article focuses on radio
astronomy, although the discussions presented here can be generalized for any passive
services.

Collaborative Interference Cancellation

Radio telescopes are generally located in geographically isolated areas farther from com-
munication networks and monitor astronomical signals in the protected bands, which
should ideally have no RFI. However, Doppler shifts in the spectral lines observed by the
telescopes are common due to movement of the observed cosmic objects relative to the
Earth. This is the most interesting scenario that radio astronomers would like to study to
understand the structure and changes to the Universe. However, this shift often reaches
unprotected frequency bands, where RFI can be even more prominent. Current RFI mitiga-
tion techniques use statistical signal analysis to detect RFI and remove the associated time
and frequency bins when detected, called excision. So, any astronomical signal of interest
will be lost if it is persistently contaminated with RFI.

Figure 2.1 illustrates the excision problem with data collected with the Deep Synoptic
Array DSA-110 [Hal+19] located at the Owens Valley Radio Observatory. It is one of the
largest university-operated radio observatories in the world and hosts DSA-110 [Hal+19].
Deep Synoptic Array-110 (DSA-110) is a radio interferometer built for fast radio burst
(FRB) detection and direct localization. It is under development to create an array of
110 x 4.65m dishes, which will continuously survey for FRBs. The data in Figure 2.1b
spanning 1300-1500MHz is corrupted with the three types of RFI encountered in radio
astronomy: continuous in time and narrow in frequency; intermittent in time and narrow in
frequency; and impulsive in time and wide in frequency. Figure 2.1c shows the same data
after identification and excision of the RFI-corrupted time-frequency bins. This flagging
and excision approach is usually tuned to minimize the probability of non-detection of the
RFI and leads to a significant data loss, sometimes as high as 40% at L-band (1-2 GHz), 30%
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Figure 2.1: RFI flagging and excision with data from OVRO [Hal+19]

at S-band (2-4 GHz) and 20% at X-band (4-8 GHz) [RSE19], impacting the recovery of the

astronomical signal of interest.

Therefore, full recovery of an astronomical sig-
nal corrupted by RFI cannot be achieved with-
out prior knowledge of the source of interfer-
ence. Fortunately, artificial signals can be char-
acterized and made available to the telescope
through collaboration. Then, the contribution
of the RFI can be accurately cancelled from the
telescope data to reveal the astronomical signal.
In our recent work [Car+21], we proposed to
decompose the RFI at the cellular BS into a com-
pact yet accurate eigenspace that is periodically
shared with the radio telescope over the Inter-
net. At the telescope the composite signal is
decomposed using the same method revealing
its eigenspace that contain the RFI subspace, ide-
ally orthogonal to the astronomical signal space.
The shared RFI eigenspace is used to cancel the
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Figure 2.2: Reconstructed space signal
compared to the true astronomical and
the composite signal.

RFI from the composite eigenspace via complimentary orthogonal projections. Since the
cancellation happens in the eigenspace, a final step to convert the eigenspace to the corre-
sponding time-domain signal will reveal the RFI-free astronomical signal. Figure 2.2 shows
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true astronomical signal (blue) captured using DSA-110, an RFI contaminated astronomical
signal (yellow), which is used in our methodology to remove RFI and reconstruct the
rectified astronomical signal (orange). The power levels are relative with measured noise
floor at the telescope (-174 dBm) as the baseline. We achieved a Reconstruction Quality
Factor (RQF) of 24.6944 dB for this reconstructed signal, which is much higher than the
theoretical lower bound of RQF=10.0007 dB. Much work remains to be done in this domain
and are not limited to issues like minimizing the overhead of communication and removing
RFI from multiple base stations as well as multiple small cells.

Interference Cancellation through Intelligent Reflections

RAS has been allocated [Burl3] only 1.3% fre- = _ _— =
quency of fully protected bands in which all - ' Sl
emissions are prohibited that are sparsely dis- . e T ‘
tributed under 30 GHz, as well as 1.2% and 0.5% 71551
of shared bands as a primary and secondary %
user, respectively. Most astronomical emissions 3
are however wideband by nature (e.g. thermal s~
or synchrotron emissions), and observatories of- . —
ten have to operate opportunistically outside the SR e Y
allocated bands to reach the required sensitivity

of their observations. Continuous transmitters Figure 2.3: Air traffic density around
can be avoided, either spatially by locating the OVRO (red star). The aeronautical sig-
radio observatories in remote areas with low nals are observed as RFI at the Telescope.
population densities [Ser21], through filtering in

the frequency domain [CLJ10], or even through

active collaboration with the transmitting service [Car+21]. Mobile transmitters, however,
cannot be spatially avoided and active collaboration through wireless media induces more
RFI in Radio Astronomy Services (RAS). These mobile transmitters may include aircraft,
satellite, handheld devices, automotive radars and UAVs that can cause significant interfer-
ence to radio astronomy observations. But, they are transient and offer frequent down times
in their occurrence of transmission that can often be exploited for astronomical observations.
Figure 2.3 shows one such example of aeronautical activity in 1090 MHz from January to
April 2022 around the Owens Valley Radio Observatory (OVRO) in California. The next
generation of radio telescope, DSA-2000 will be even larger with 2000 dishes. Both DSA-110
and DSA-2000 suffer significantly from airborne RFI. Hence, it is essential to innovate
techniques that can intelligently detect and track RFI in real time and accurately cancel it at
the radio telescope to preserve scientific observations in those electromagnetic bands.

In our recent work [Zou+22], we introduced SCISRS: Signal Cancellation using Intelligent
Surfaces for Radio Astronomy Services, which cancels incident RFI at the telescope receiver
through creation of a destructive wavefront using a Reconfigurable Intelligent Surface
(RIS). The proposed system is the first of its kind where RIS is used to cancel the energy of
an RFI wavefront for a radio telescope. It allows the removal of the RFI before it reaches
the ADCs of the telescope, thus facilitating scientific broadband observations across the
electromagnetic spectrum.
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Given a direction of arrival (DoA) of an RFI, SCISRS
changes the phases of the RIS elements to steer the
incident RFI towards telescope in order to cancel the
incident interference at the telescope, thus dynami-
cally creating a EM quiet zone around the receiver of
the radio telescope. To realize this idea, we focus on
the aeronautical signals from aircraft (960-1215 MHz)
in L-band due to growing interest in observing the
lower frequencies by the radio astronomy commu-
nity. Figure 2.4 shows the system architecture with
three entities: the telescope receiver, the RFI DoA
Estimator and the RIS, which are together used to
cancel the RFI transmitted by an airborne transmit-
ter. The direct path of RFI (aeronautical signals) is
incident on the telescope receiver, which undergoes
flat fading channel, propagation loss and antenna
sidelobe gain. Similarly, another direct path of the
transmitter signal reaches the RIS unit. The reflected
signal at the telescope is the collective sum of all
signals reflected by multiple RIS cells, which has un-
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Figure 2.4: SCISRS: Cancelling RFI
from airborne transmitters at the ra-
dio telescope by reconfigurable intel-
ligent surfaces.

dergone a cascaded channel of Transmitter-RIS and

RIS-Telescope. The RFI is cancelled at the radio tele-

scope when both the magnitude and phase response of the RIS array exactly equals the channel
and antenna gains of the direct path. Essentially, SCISRS makes passive radio telescope a
cognitive system that can reflect incident RFI, dynamically creating an EM quiet zone to
coexist with other important active wireless communications around it.

Future Directions for Cognitive Communication Networks

Wireless technology has changed our lives and has enormous potential to change the way
we live over the next several decades. Wireless signals have helped connect people across
the globe, communicate beyond the Earth, sense signals originating from outer space or the
Earth for understanding the Universe or our world through the window of radio frequency
(RF). However, the exponential growth of active wireless services has brought forth new
challenges due to increased requirement for spectrum usage. But, the electromagnetic (EM)
spectrum is a constant and limited resource and needs to be appropriately shared among
all wireless systems and applications, including both active and passive uses. Hence, it is
essential to induce “cognition” in both active and passive users for seamless coexistence
of multiple services that improve effective spectrum utilization. This newsletter includes
four articles by eminent researchers in the area of cognitive wireless communication. Their
vision will pave the path for future research in next generation cognitive wireless systems.
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3. Visions of Prof. Kaushik Chowdhury

“Cognition” for Next Generation
Wireless Technologies

Author: Prof. Kaushik Chowdhury,

Institute for the Internet of Things, Northeastern University
Boston, MA, USA,

Website: https://genesys-lab.org

Email: krc@ece.neu.edu

Introduction

Wireless engineers have attempted to empower radios with cognition and ability to make
independent decisions that optimize a defined network utility over the past two decades.
The goal of early efforts towards designing so called “cognitive radios” is captured in the
definition proposed by the US Federal Communications Commission [FCCO03]:

A “Cognitive Radio” is a radio that can change its transmitter parameters based
on interaction with the environment in which it operates.

While the definition is broad, most research efforts have focused on spectrum sharing and
access under different priority levels for primary and secondary users of the spectrum.
Over the past two decades, this body of work has laid the foundation for the next stage of
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evolution of cognitive radios, which will indeed become transformative in the next decade.
Along these lines, this article attempts to capture two emerging directions in the general
area of imbibing intelligent operation within radios and how they will impact the future
of wireless. Specifically, it describes a vision for (i) building trust in the operation of such
radios, and (ii) shaping the environment, going beyond merely reacting to it. The definition
of the term “cognitive radio” above narrows its functions to self-reconfiguration. Instead,
this article advocates for “intelligent interacting” (I?) radios. I? radio operation is built on
two key abilities: The first involves leveraging the power of connections whenever needed,
be it among peer-radios or radios and humans. The second involves radios co-working
with other configurable entities in the environment, which leads to interesting decisions
on when to self-reconfigure (along the lines of the existing vision for cognitive radios) and
when to reconfigure the environment itself.

Building trust in I> radios

Intelligent radio operation often relies on machine learning (ML), which is used to control
the ‘knobs’ of radio operation. As an example, several approaches involving reinforcement
learning and Bandit algorithms have been used to solve problems of which spectrum
to access and when, based on assumptions of unknown activity patterns of the primary
incumbents. For such methods, our understanding of crafting utility functions and rewards
for radio operation has made rapid strides. More recently, deep neural networks have been
shown to be remarkably successful for inference tasks when the underlying causes of an
otherwise observable effect are unknown. As an example, models like VGG [SZ14] and
ResNet [He+16] can classify one out several dozens of modulation classes or identify a
particular emitter among several devices that of the same make/manufacturer/model and
advertise bit-similar addresses. There are many other examples of such networks being
used in beam selection, code-book generation, underlay signal detection, among others.
Despite these success stories, a vexing question remains:

How can we rely on such radios, if their operation relies on mathematical
computations within a black box neural network?

Indeed, deep neural networks models have so far been resistant to interpretation and an
elegant mathematical formulation that explains their inner workings has proven to be
elusive. A possible way to break this impasse is to develop a notion of trust that is divorced
from that of interpretability. Drawing an analogy from flying in an airplane, a passenger
happily enjoys the in-flight food and entertainment for hours on end, well knowing that
the plane is largely flying by itself. Control loops take in data from hundreds of different
parameters, analyze them for context and then actuation decisions are made in split-second
intervals by the flight computer. There may be an unexpected event that the algorithms
have not been designed for, which can lead to catastrophic consequences if left to the
machine alone. For these reasons, there is always a human pilot on hand, who can assume
control and recover from machine errors. Thus, the passenger trusts the combined human
pilot and autopilot system that can potentially check and guide each other. The overall
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Figure 3.1: Sample spectrograms for training an ML model to detect the presence of LTE
signals (shown by yellow color) for different sampling rates. Spectrograms in (a) and (b)
are obtained at a sampling rate of 100MHz and 12.5MHz, respectively. Spectrogram (c) is
constructed by artificially “stretching and interpolating” a sliver of spectrogram (a), which
now resembles the lower frequency spectrogram (b).

system is far too complex for a lay passenger to be interpretable and yet there is a notion of
trust.

We need to revisit our expectations of intelligent radios, especially in the context of problems
that require deep learning models not amenable to full interpretation. For mission-critical
systems, the radio should be able to interact with (again the motivation for I 2 radios
becomes relevant here) and query a human expert or even a deterministic model of the
system. These gentle guiding efforts may allow the I? radios to perform better over time.
Thus, the notion of trust here does not stem from the expectation that the radio will always
perform optimally, but rather from the belief that it will know to seek help from an external
expert when needed. There are several open challenges that must be addressed to realize
this goal.

Knowing When Past Learning Falls Short

Test performance of a radio running an ML model depends on whether the training data is
sufficiently representative of test conditions. As an example, consider the case when a radio
is trying to identify the presence of an unauthorized LTE signal in the 3.5GHz Citizens
Broadcast Radio Service (CBRS) band. If the machine learning model for detecting the
LTE signal is trained on spectrograms obtained at a high sampling rate (see Fig 3.1 (a)), it
will not perform well if the test signal is obtained at a lower sampling rate (see Fig 3.1 (b)).
This scenario can be addressed locally by the radio, by data augmentation methods. The
training dataset can be sliced and stretched with pixel interpolations to resemble a lower
sampling rate spectrogram (see Fig 3.1 (c)), even if such data is not available at training
time. The radio needs to distinguish cases like this from others wherein local augmentation
is not possible. The latter cases arise when new signals need to be detected, or equivalently,
new classes are introduced, requiring a completely new dataset. As shown in Fig 3.2 (a-b),
detecting signals after introducing a new class, i.e frequency hopping spread spectrum
signal (FHSS) needs external support for the radio. Prior works that examine whether the
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Figure 3.2: Apart from LTE discussed in Fig 3.1 earlier, a new FHSS signal is introduced.
To detect this new class, a new dataset needs to be created followed by another round of
training. Two different spectrograms are shown for different modulations of the FHSS
signal and relative powers of the LTE and FHSS signals.

test data comes from out-of-distribution (i.e., may contain classes not seen during training
time) are an excellent starting point [Gri+19; Kat+22]. This step can then trigger expert-led
(the expert here can be either human or machine) efforts for minimal new data collection
in the unseen environment and/ or selective labeling of previously data collected in new
environments by the expert. In these cases, the overhead associated with data collection (in
the former case, using meta learning [FAL17]) and data labeling (in the latter case, using
active learning [ZKN22]) is minimized. In all of these, there is on-demand interaction
between the deployed ML and the remote expert, and this coordination is an integral part
of the I? radio vision.

Analyzing the Cost of Querying the Expert

The cost of querying the expert is the price of trust. Consider real-time and non-real time
costs in the following examples. There is an increasing trend towards swapping classical
deterministic signal processing blocks with their corresponding machine learning-based
models. In a recent paper [Sol+22], we showed that indeed a modular NN-based receiver
improves bit error rate of the traditional non-ML receiver (implemented in MATLAB) by
61% and 10% for simulated and over-the-air collected datasets, respectively, for certain
low signal-to-noise ratio (SNR) conditions. However, in the process of establishing trust
in these ML models, there is no option for offline querying, as the receiver must process
millions of IQ samples per second. Thus, if the expert is situated closeby, possibly on the
same chip itself that executes the NN models, then the cost of querying in terms of time
can potentially become negligible (see Fig 3.3). An intriguing concept of ‘cost’ may arise
from seeking the output of the deterministic algorithm that is licensed by a patent holder.
More the number of queries that are sent to the expert, more is the billing incurred. In a
future era where ML-based ‘black boxes” are poised to circumvent core-technology IP held
by major companies, this could be a possible revenue model for the latter.

On the other hand, querying a remote expert may be possible for longer-time scales for
problems such as network slicing for resource allocation at the base station, scheduling
policy selection, among others. The expert may reside remotely, at the network edge or a
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Figure 3.3: A typical OFDM receiver chain with the traditional signal processing blocks
(blue) and the additional machine learning related blocks (green) using deep learning
(DL) co-existing within the same chip. The DL module can learn the outcomes based on
traditional least-square based channel estimation by querying the pure signal processing
LS block.

Figure 3.4: (a) Custom designed time/phase/frequency synchronization circuit, (b) 9-
element RIS design, each of which can set , and (c) car mounted LiDAR, camera and
directional beamforming arrays

centralized cloud; in fact, many related problems form the core focus interest of the US NSF
indeed AI-Edge Institute [NSF]. Thus, the cost in this case is the impact on the wireless
link efficiency and the overall end to end latency for sending the control data to the expert
and the decision back to the radio. To fully characterize this, more research is needed on
whether some of the queries can be pre-emptive, the wireless/wired standard used for
control, and the frequency of such queries: possibly, early on, the queries are more frequent
and then taper off with time as the ML model gains more experience. Again, all these
metrics depend highly on interaction with the I? radio.

Shaping the Environment

Using RF Sources

Future I? radios will proactively interact with each other as well as with other passive
embedded technology like reconfigurable intelligent surfaces (RIS) to force changes in the
wireless propagation environment. Proactive interaction among radios can take several
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forms, as we describe below with examples. Consider a situation where the receiver is
located in a high interference or in a non-line-of-sight (NLOS) environment which consider-
ably reduces the signal to interference and noise ratio (SINR). This increases the bit error
rate at the receiver. Here, multiple transmitter radios that share the same information to be
transmitted can coordinate their actions to ensure their respective signals align at the same
time with constructive phases to increase the SINR at the receiver. However, radios will
need to synchronize their clocks, generate a common timing pulse reference as well as start
their transmissions with suitable delays (depending on their respective locations) to ensure
that all signals arrive at the same instant. While this form of coordinated beamforming is
challenging enough for line-of-sight (LOS) conditions, identifying suitable reflecting paths
for each radio in NLOS conditions for the desired effect at the receiver is yet to be addressed.
We demonstrated such distributed coordinated beamforming for software defined radios in
static and mobile scenarios for LOS conditions. Central to enable such a desired outcome is
contact-free synchronization, for which we designed a customized hardware circuit to ex-
change control signals among all the radios in the network, [Ale+21] (see Fig. 3.4 (a)). Thus,
the overheads are considerable, requiring specialized synchronization hardware and then
incurring the cost of sharing the information to be communicated among the entire group
of transmitters. Several other interesting scenarios have been proposed by the research
community that include radios working together by injecting specially constructed RF
signals in the shared wireless medium to cancel out undesired interference at the receiver
to intentionally introducing signal transformations that result in incorrect classifying of
waveform features like the modulation class [Kim+22].

A new and exciting paradigm that is being actively investigated by the community involves
setting the reflection properties of the surrounding surfaces through RIS. This allows a fine-
grained control over the signal propagation path, allowing the signals to overcome blocking
obstacles and increase directivity. Different from the proactive coordination between radios
described earlier, the RIS are generally considered as passive elements in the sense that they
do not radiate energy. By carefully adjusting the reflection phase of each element, the entire
surface becomes programmable. There are a number of challenges in such interactions:

1. Configuring RIS in real time: Radios transmit specially designed preambles that may
be used for channel estimation at the receiver side. However, for passive RIS, adapting
to changing wireless conditions is a challenge since they do not explicitly emit signals.
Furthermore as the wireless channel changes over time, setting the optimal reflection
phases of each of the RIS element must be completed within the coherence time of
the channel. For ubiquitously deployed RIS that can have thousands of individual
elements, clearly exhaustive search is not feasible. If the phases of each element
can be changed on a continuous scale, then the entire network need not operate
under the limitations of a fixed size codebook. While such a capability may allow
the RIS to accurately track the motion of a target receiver, it increases the difficulty
in setting the parameters of the RIS. Our prototype design (see Fig. 3.4 (b)) allows
for selecting 4-different phases for each RIS element in a 9-element RIS surface by
activating the delays in a transmission line. Even under such limited systems design,
the computational challenges involved is setting the correct phases under different
channel conditions imposes real-time operational challenges.
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2. Protocols for RIS to I? radio links: There is no standardized protocol today for I? ra-
dios to discover the presence of RIS, identify the transmitter-RIS-receiver positional
constraints and harness computational support from a local edge compute service
and then issue control directives in near-real time. Without such a dedicated control
channel for these tasks, the promise of shaping the wireless environment in real time
cannot be achieved.

3.3.2 Using non-RF Sources

3.4

Shaping the environment can involve interacting with more than just RF devices. We are
surrounded by a number of sensors that capture data in the form of camera images, LIDAR
and radar to name a few. These sensors can be mounted statically in public spaces as well
as on vehicles, and the resulting data stream can be fused to obtain contextual information
of the environment in which the radios operate. In recent work, we explored how such
information could be utilized through deep learning models to guide beam selection for car
and road-side base station mounted radios [Sal+22] through datasets collected on actual
autonomous cars (see Fig 3.4 (c)). Akin to human cognition that relies on information
obtained via different senses, future I? radios will rely on non-RF sources, requiring new
ways to think about obtaining such information and processing them at the network edge.

This novel form of cognition will require shaping the environment in context of where to
place such multimodal sensors and how to design efficient control channels that can work
reliably during network congestion and in the rich multipath observed in urban canyons.
There are a number of tools for creation of virtual environments, from open-source to
cutting-edge industry products. For example, the Raymobtime dataset [Kla+18] captures a
virtual deployment with high fidelity in the urban canyon region of Rosslyn, Virginia for
different traffic patterns. A static roadside base station is placed at a height of 4 meters,
alongside moving buses, cars, and trucks. The image and LiDAR sensor data are collected
by Blender, and Blender Sensor Simulation (BlenSor) [Gsc+11] software, respectively. Such
a tool can be utilized to create virtual worlds, populate it with radios, sensors, movement
and traffic patterns and examine the effects of how multimodal data can be best utilized by
the I radios. This can then be utilized to create the real world with similar performance
characteristics once several possible options are explored in the digital domain. Technology
companies like NVIDIA and Meta will soon release platforms like the Omniverse [NVI]
and products like the Metaverse navigating headsets [Met], which will enable how the real
world is eventually shaped and how radios and humans interact within them.

Conclusion

We are at an opportune moment when wireless technologies are poised to make a transfor-
mative jump. Radios will soon continuously interact with themselves and the environment,
not only to reconfigure themselves but also active emitters and passive reflectors that
will be ubiquitously deployed. They will utilize vast amounts of multimodal data that
will be generated by thousands of sensors in the environment. Driven by advances in
edge computing, radios will gain contextual knowledge of the environment in which they
operate, and some of this can also be used to iteratively improve the real world by careful
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placement of all the proactive and passive interacting devices. While the benefits are many,
there are also some concerns on what the underlying ability of interaction between I? radios
will entail: Could such radios form groups and display emergent behavior that is at least
unfair if not malicious towards non I2 radios? Are we, as humans, prepared to give up our
need for interpretability and elegant mathematical representations of underlying wireless
behavior for performance gains shown by a ‘black box” neural network? What new eco-
nomic models must be designed for traditional wireless processing blocks to co-exist within
future wireless transceivers that are progressively being replaced module by module?
While we will certainly advance the science and formulate solutions to the above seemingly
vexing problems, at core, we need to retool ourselves. The lines between the physics of
signal propagation, signal processing, computation, learning, device fabrication, sensors
and networks protocols are blurring. Cross-disciplinary knowledge and considering the
environment and its many interactions holistically through the I concept, as opposed to
operation of a single and isolated radio, is a promising way forward.
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Introduction

The explosion of data traffic growth, massive number of devices, and commercialization of
the 5G wireless communication networks impose great challenges on spectrum usage as
well as data security [Wan+22][Sun+18]. On the one hand, in order to meet requirements
in the 5G communication system, the future wireless solutions should provide a 10 — 100
times higher data rate and support a 10 — 100 times higher density of connected devices.
On the other hand, the spectrum fragmentation and the crowed spectrum occupation,
especially below 6GHz, can potentially hamper the progress of achieving these capacity
and connectivity goals. Furthermore, the complicated communication environments and
data driven usage scenarios can leave users and systems to potential attacks. Thus security
and privacy issues have become one of the primary concerns in future wireless networks.

SS networks can effectively help relieve the shortage of spectrum resources. Different from
traditional exclusive frequency allocations, SS by definition involves multiple entities to
use the spectrum in a shared or nonexclusive way in order to increase the efficiency of the
limited spectrum resources.

One of the technical challenges in the SS system is how to guarantee the performance of
different users while achieving the efficient spectrum usage. Towards that end, spectrum
access mechanism, interference control, resource allocation, and fairness need to be tackled
in a dynamic and collaborative way. Since the concept of SS was first introduced, different
SS frameworks based on various usage scenarios have been developed by researchers.

l LTE-U/LTE-

| CRN LSA/CBRS LAA AmBC
P = | Ditabase/ T e
Osiomtuustic Sensing/Exclusi Comris T BT/ Symbiotic
spectrum access | ohzas Duty cycle |

Figure 4.1: Spectrum sharing paradigm.

As shown in Fig. 4.1, spectrum sharing was originated from the concept of opportunistic
access. Database-supported access frameworks on a specific licensed frequency band were
then developed to connect new users to the unused licensed band without degrading the
performance of IUs to improve the SE. As the number of devices as well as the demands
for the network capacity quickly increase, extending services based on the licensed band to
the unlicensed band was adopted. LTE-U uses the unlicensed band to improve the licensed
users’ performance. Furthermore, symbiotic schemes such as AmBCs can help meet the
needs from the massive growth of IoT devices that normally have power and resource
limitations, providing a new paradigm for spectrum sharing. Although these different
mechanises share some overlapping features such as sensing and access control, each has
its distinctive focuses. 5G has a very broad technical scope and needs to address a variety of
communication goals. Therefore, investigating SS under different frameworks can provide
very instrumental views for future wireless communication system development.

Nevertheless, to fully exploit the great potentials of SS, users need to interact intelligently
with complex and dynamic radio environments to gain high quality channel access and
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control, the interference. Relying only on traditional radio access technologies will not be
able to tackle such a level of complexity. With the advancements of computing technologies
and algorithmic development, ML has garnered tremendous motivations and recently has
demonstrated great potentials for tackling large-scale, highly dynamic, very complicated
problems that traditional techniques may not readily handle. Many studies have demon-
strated that ML algorithms are very powerful and effective in handling tasks such as data
classification, decision-making, facial recognition, etc [BLJ13].

The combination of ML with SS networks is very appealing given that SS decisions are nor-
mally based on data collected through sensing and measurements. For all the frameworks
mentioned above, users in the SS network need to observe the spectrum resource usage
and make corresponding decisions in accordance with three major actions, i.e., perception,
learning, and reasoning [BLJ13]. In ML, a user first senses the surrounding environment
and internal states through perception to obtain information. It further transforms that
information into knowledge by using different classification methodologies and general-
izes the hypothesis. Based on the obtained knowledge, it then makes decisions through
reasoning.

The development of SS techniques can help relieve spectrum scarcity. However, due to
the dynamic sharing of spectrum resources by many different users, SS systems can be
exposed to various malicious attackers. Firstly, the lack of ownership of the spectrum
leaves unlicensed users highly susceptible to malicious attacks. Therefore, it presents more
challenges to protect their opportunistic spectrum access from adversaries. Secondly, the
dynamic spectrum availability and distributed network architecture make it more difficult
to implement coordinated security countermeasures. Moreover, in some SS systems, PUs
may contain sensitive information, which can be effortlessly obtained by malicious SUs
during the SS process. Thirdly, new technologies such as ML may also be exploited by
attackers to launch some new attacks. This article mainly focuses on the threats and
mitigation strategies in the physical layer of the SS network. It first investigates works
related to two classical spectrum sensing attacks in the SS network, i.e., PUE attacks and
SSDF attacks, which aim to disturb the spectrum observation and users” access to the system.
It also studies methods of preventing two attacks that exist in wireless communication
networks, i.e., jamming attacks and eavesdropping attacks. Yet the special features of
the SS network provide new defense solutions for these common wireless attacks. When
PUs share their licensed spectrum with multi-type users in some SS frameworks, privacy
issues can also arise. While, application of ML in security countermeasures yield effective
solutions potentially, it also gives attackers new opportunities and intelligence to disturb
system operations.

ML-based Methodologies for SS
ML Based CRN

In a CRN, unlicensed SUs need to identify vacant or unoccupied licensed frequency bands
(or spectrum holes) owned by licensed PUs [Hos+20]. After detecting the spectrum holes,
SUs can access them without visibly interfering with any PUs. If a PU’s activity reappears,
SUs must vacate the corresponding spectrum immediately. This dynamic and uncertain
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Figure 4.2: Key steps in CRN.

spectrum access creates unique and complex challenges. ML algorithms offer unique
advantages in dealing with such challenges.

As shown in Fig. 4.2, the major steps in CRN can be summarized as spectrum sensing,
spectrum selection, spectrum access, and spectrum handoff [Aky+06]. A CR agent first
uses the sensing function to monitor the unused spectrum and search for possible access
opportunities for SUs. Based on the sensing results, the spectrum selection function helps
SUs select the best available channels. The spectrum access mechanisms provide fair
spectrum scheduling among vying SUs. Since a channel must be vacated when the PU
reappears, the corresponding SU must perform a spectrum handoff function to switch to
another available channel or wait until another channel becomes idle. Most of the existing
SS approaches adopted these four steps in their frameworks.

Spectrum Sensing

Before an SU accesses the licensed channel, it needs to first observe and measure the
state of the spectral occupancy (i.e., idle/busy) by performing spectrum sensing. During
this procedure, the SU needs to distinguish the PU signals from background noise and
interference. As such, spectrum sensing can be formed as a classification problem.

A new approach, as shown in Fig. 4.3, to training data augmentation and domain adaptation
was presented in [DS18]. A Generative Adversarial Network (GAN) with DL structures was
employed to generate additional synthetic training data to improve classifier accuracy and
adapt training data to spectrum dynamics. This approach can be used to perform spectrum
sensing when only limited training data is available and no knowledge of spectrum statistics
is assumed.

Spectrum Selection

The spectrum selection is performed to capture the best available spectrum to meet user
needs based on the sensing outcomes. As a decision-making problem, it requires the
system to adaptively select the optimal choice based on observations of the environment.
RL algorithms are appealing tools for designing systems that need to perform adaptive
decision-making.

As shown in Fig. 4.4, at the beginning of the RL cycle, the agent receives a full or partial
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Figure 4.3: OFDM transmitter and receiver structure with SAGA for spectrum sensing and
workflow for training data augmentation. [DS18].

observation of current states and the corresponding reward. Combining those states and
rewards, the policy is updated by each agent during the learning stage. Then the agent
performs a certain selection action based on the updated policy at the decision stage. With
RL, CRN can be modeled as a distributed self-organized multi-agent system in which each
SU or agent performs spectrum selection by efficiently interacting with the environment
through a learning policy. In this approach, other SUs’ decisions can be considered as a
part of the responses of the environment for each SU.
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Figure 4.4: The reinforcement learning cycle.

Spectrum Access

One important question in CRN spectrum access is related to how to assign limited re-
sources, such as available spectrum channels and transmit powers, to maximize the system
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throughput and efficiency.

An RL-based resource allocation approach entitled Q-Learning and State-Action-Reward-
State-Action (SARSA) was proposed in [KK20]. It mitigates interference without the
requirements of the network model information. Users in this method act as multiple
agents and cooperate in a decentralized manner. A stochastic dynamic algorithm was
formed to determine the best resource allocation strategy. It was shown that the energy
efficiency could be significantly improved by the proposed approach without sacrificing
user’s other QoS metrics.

Spectrum Handoff

Spectrum handoff is intended to maintain seamless communication during the transition
to a better spectrum. However, enabling spectrum handoff for multimedia applications
in a CRN is challenging due to multiple interruptions from PUs, contentions among SUs,
and heterogeneous Quality-of-Experience (QoE) requirements. Although an SU may not
know exactly when the PU comes back, it always wants to achieve reliable spectrum usage
to support the QoS requirements. If the quality of the current channel degrades, the SU can
make one of the following three decisions:

(1) Stay in the same channel and wait for it to become idle again (called stay-and-wait).

(2) Stay in the same channel and adapt to the varying channel conditions (called stay-
and-adjust).

(3) Switch to another channel that meets the QoS requirement (called spectrum handoff).

In [Wu+14], a learning-based and QoE-driven spectrum handoff scheme was proposed to
maximize the multimedia users’ satisfaction. A mixed preemptive and non-preemptive
resume priority (PRP/NPRP) M/G/1 queueing model was designed for the spectrum usage
behaviors of prioritized multimedia applications. The RL-assisted QoE-driven spectrum
handoff scheme was developed to maximize the quality of video transmissions in the long
term. Their proposed learning scheme could adaptively perform spectrum handoff based
on the variation of channel conditions and traffic loads.

ML Based LTE-U/LTE-LAA

LTE-U has emerged as an effective technique for alleviating spectrum scarcity. Using
LTE-U along with some advanced techniques such as carrier aggregation can boost the
performance of existing cellular networks. However, LTE was initially designed to op-
erate in the licensed spectrum exclusively and was not for harmonious coexistence with
other possible co-located technologies [Tan+20]. For this reason, introducing LTE into
the unlicensed spectrum leads to possible coexistence issues with other well-established
unlicensed technologies such as Wi-Fi, IEEE 802.15.4, or Bluetooth. To enable fair spectrum
sharing with other technologies operating in the unlicensed spectrum, in particular with
Wi-Fi, new schemes to allow coexistence are needed. On the other hand, not much research
attention has been given to studying cooperation across different technologies. Networks
that participate in a cooperation scheme can exchange information directly or indirectly
(via a third-party entity) to improve the efficiency of spectrum usage in a fairway.

To standardize LAA technology in the 5 GHz spectrum, the Third-Generation Partnership
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Figure 4.5: LBT based method.

Project (3GPP) standardization group aims to develop a single global framework of LTE in
the unlicensed bands. The framework should guarantee that the operation of LTE does not
critically affect the performance of WiFi networks. The works started with the downlink
LTE-A (LTE Advanced) Carrier Aggregation (CA) in the unlicensed band. This was later
expanded to operate downlink and uplink simultaneously[Par+16]. The LTE LAA employs
a Listen Before Talk (LBT) mechanism to avoid collision and interference among users.

LTE-U is another option for operating LTE in an unlicensed spectrum, where LTE base
stations exploit transmission gaps to facilitate coexistence with WiFi networks. The devel-
opment of LTE-U technology has been led by the LTE-U Forum, an industry alliance. LTE-U
has been designed to operate as an unlicensed LTE in countries where the LBT technique is
not mandatory. LTE-U defines the operation of primary cells in a licensed band with one or
two secondary cells (SCells), every 20 MHz in the 5 GHz unlicensed band: U-NII-1 and/or
U-NII-3 bands, spanning 5150-5250 MHz and 5725-5825 MHz, respectively [Par+16].

Here are some specific ML based schemes.

¢ ML Based LBT Methods
According to LTE LAA standards in 3GPP Release 13, the LTE system must perform
the LBT procedure (also known as Clear Channel Assessment, CCA) and sense the
channel prior to a transmission in the unlicensed spectrum. As shown in Fig. 4.5,
when the channel is sensed to be busy, the LTE system must defer its transmission by
performing an exponential backoff. If the channel is sensed to be idle, it performs a
transmission burst with a duration from 2 — 10 ms, depending on the channel access
priority class.

¢ ML based Duty Cycle Methods

LTE ‘OFF LTE ‘ON’ LTE ‘OFF LTE ‘ON’

Figure 4.6: Duty cycle based method.

Carrier Sensing Adaptive Transmission (CSAT) is a technique that can enable coexis-
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tence between LTE and Wi-Fi based on minor modifications of the 3GPP LTE Release
10/11/12 Carrier Aggregation protocols. As shown in Fig. 4.6, CSAT introduces
the use of duty cycle periods and divides the time into LTE “ON” and LTE “OFF”
slots. During the LTE “OFF” period, also known as the “mute” period, LTE remains
silent, giving other coexisting networks, such as Wi-Fi, the opportunity to transmit.
During the LTE “ON" period, LTE accesses the channel without sensing it before
transmission. Moreover, CSAT allows short transmission gaps during the LTE “ON”
period to allow for latency-sensitive applications, such as VoIP in co-located networks.
In CSAT, eNB senses the medium during a time period ranging from 10 to 100 ms
and according to the observed channel utilization (based on the estimated number of
Wi-Fi APs) defines the duration of the LTE “ON” and LTE “OFF” periods [Tan+20].

* The existing work of LTE-U mainly focuses on using different RL algorithms to adjust
the duty cycle and other network resources to maintain fairness between LTE and
WiFi users, as well as to seek for a higher system capacity performance [Tan+20;
Su+18; Cai+16; Zha+17].

4.2.3 Ambient Backscatter Networks

A technology named AmBC has received significant attention as a new SS framework
[Liu+13]. In backscatter communication (e.g., RFID), a device communicates by modulating
its reflections of an incident RF signal without generating its own radio waves. Hence, it is
significantly more energy-efficient than conventional radio communication. AmBC system
enables two devices to communicate using ambient RF as the only source of power.

In particular, in an AmBC system as illustrated in Fig. 4.7, the backscatter transmitter
can transmit data to the backscatter receiver by modulating and reflecting surrounding
ambient signals. Hence, the communication in the AmBC system does not require dedicated
frequency spectrum. Based on the received signals from the backscatter transmitter and the
RF source or carrier emitter, the receiver then can decode and obtain useful information
from the transmitter. By separating the carrier emitter and the backscatter receiver, the
number of RF components is minimized at backscatter devices and the devices can operate
actively, i.e., a backscatter transmitter can transmit data without initiation from receivers
when it harvests sufficient energy from the RF source [Van+18]. Therefore, AmBC systems
can share spectrum with existing systems and achieve better spectral efficiency than that of
RFID systems.

The existing ML based works for AmBC systems are mainly focused on the information
extraction and mode selections.

Information Extraction

Since ambient backscatter uses uncontrollable RF signals that already have information
encoded in them, it needs a different mechanism to extract the backscattered information.
In an AmBC system, the readers receive the backscattered signal from the backscatter
device (BD) and the Direct-Link Interference (DLI) from the RF source simultaneously.
Due to the randomness of ambient RF sources, it is challenging to distinguish backscatter
symbols from DLI. Furthermore, the existence of DLI can further cause the conventional
Energy Detector (ED) to fall into severe error floor problems. [Guo+19] developed a novel
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Figure 4.7: AmBC network.

error-floor free detector by using multiple receive antennas at the reader side. Based on
this, a novel statistical clustering framework was designed for joint CSI feature learning
and backscatter symbol detection.

Operating Mode Selection and User Coordination

Due to its passive nature, Backscatter Devices (BDs) in AmBC systems must harvest en-
ergy to power operations such as circuit power consumption, transmission, and sensing.
Moreover, although the BD can perform the backscatter and energy harvesting simultane-
ously, it is impractical and inefficient when the amount of harvested energy is relatively
small and can only supply internal operations. Therefore, how to efficiently determine the
tradeoff between energy harvesting and backscattering RF signals is critical in a dynamic
environment. By adaptively selecting the operating mode in a fading channel environment,
the throughput maximization problem of the AmBC system was solved in [Wen+19]. A
Q-learning algorithm was employed to explore a suboptimal strategy through repeated
interactions with the environment. The efficacy of their proposed Q-learning method
showed that close-to-optimal throughput performance could be achieved.

ML in Security and Privacy of SS Systems

While the ML-based SS networks can help improve the performance, they can also be a
double-edged sword to be exploited by the attackers. The dynamic access frameworks
introduce more security and privacy risks into the system. As shown in Fig. 4.8, when
SUs observe the activity of PUs, the sensing procedure can be disturbed by the malicious
attackers by launching the PUE attacks or SSDF attacks. The attackers may also exploit these
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Figure 4.8: Secure and privacy issues in SS network.

opportunities to harm the privacy of PUs. The system also suffers the same security issues
found in traditional wireless communications, such as jamming attacks and eavesdropping
attacks. Besides launching attacks based on the SS framework, attackers can also attack the
ML models.

Primary User Emulation Attack

In CRN, a PUE attack denotes a PU-like signals sent by an attacker during the spectrum
sensing period that can exclude legitimate SU access to the channels. The attackers may be
selfish users who want to use the spectrum exclusively or malicious attackers who want to
disrupt the normal operation of the system. PUE attacks can cause service degradation,
denial of service (DoS), connection unreliability, and bandwidth waste.

A typical PUE attack is illustrated in Fig. 4.9. In defending against such attacks, the most
important step is to distinguish malicious attackers from legitimate PUs. This can be
achieved using specific features extracted from received signals. Distinct features may
reflect the transmitters’ characters, rendering them unique and differentiable. User location
based method is a common and easy way to differentiate between attackers and PUs. Since
the received signal strength (RSS) varies by location, it can be adopted to identify location
and user type. Some other methods are based on statistical analysis. They use features such
as signal power, spectrum occupancy time, and cyclostationarity extracted from received
signals to analyze transmitters. Finally, the physical layer approaches uses the hardware
behaviors of transmitters or channel behaviors to detect attackers. For example, phase and
frequency shifts are commonly used as transmitter fingerprints. A detection problem based
on received signals is a classification problem, which ML is particularly good at solving
[AU20; MFG20; IK20; Alb+19; Don+18; Fur+20; Elg20; CKN11; S515; SSM19].

Spectrum Sensing Data Falsification Attack

A group of SUs can collaborate to perform the spectrum sensing by exchanging locally-
collected information. An SSDF attack (also known as the Byzantine attack) is launched by
sending false local spectrum sensing results to others, leading to flawed spectrum sensing
decisions. SSDF attacks aim to decrease detection probability and disturb normal operations
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Figure 4.9: llustration of PUE attacks.

of the primary system. It may also seek to increase the probability of false alarms in order
to deprive honest SUs of access opportunities . SSDF attacks harm the system’s integrity
and

Figure 4.10: Illustration of SSDF attack.

Cooperative Spectrum Sensing (CSS) can help overcome the fading environments and
improve the system sensing performance. Different from single-user-based SS, each SU
needs to transmit the sensing results to a Fusion Center (FC) in CSS. FC then combines
those results and makes a final decision about the PU’s presence. SSDF is the most common
attack in CSS. As shown in Fig. 4.10, sending falsified sensing data to the FC can lead to
an incorrect fusion result, cause interference with PUs, and cause DoS to SUs. To defend
against SSDF attacks, the most important step is to differentiate attackers from legal SUs.
The existing defense methods fall into two groups, namely outlier detection approaches and
reputation-based approaches [FAB11; Nie+17; Huo+15; STM20]. In outlier detection meth-
ods, the abnormal user is excluded from the network. In reputation-based methods, on the
other hand, SUs are assigned a reputation degree that reflects their detection performance.
Since SUs are not eliminated and their reports are not excluded, reputation-based methods
can use the collected information more thoroughly than outlier detection techniques.
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Jamming Attacks

The open and broadcasting nature of wireless channels leaves them vulnerable to various
attacks. One commonly seen attack in wireless communications is jamming attack. Attack-
ers transmit signals to interfere with the victims” communications in order to cause a DoS
and compromise availability of communication links. Traditional anti-jamming methods
in wireless communications include sequence-based frequency hopping spread spectrum
(FHSS) and direct sequence spread spectrum (DSSS). However, the fixed transmission
patterns of these methods hamper their effectiveness against dynamic jamming attacks.

ML enabled techniques can provide more adaptive channel selection ability to systems
tp tackle jamming attacks. They also give the system the ability to learn and predict
the behaviors of jammers and increase anti-jamming channel selection efficiency. On the
other hand, the attackers may also use different ML based methods to improve their
attack strategies rendering the study of advanced jamming attacks and corresponding
countermeasures of vital importance to the SS system.

Most jamming countermeasures focus on how to enable users to efficiently escape the
invaded channel. AmBC opens the possibility fighting against the malicious jammers. As
shown in Fig. 4.11, a method that allows wireless nodes to fight against a jamming attack
instead of escaping was proposed in [Van+19]. By first learning the adversary’s jamming
strategy, the users could decide whether or not to adopt the rate or backscatter modulated
information on the jamming signals. A dueling neural network architecture-based DRL
algorithm was developed to deal with unknown jamming attacks such as jamming strate-
gies, jamming power levels, and jamming capability. The proposed algorithm allowed the
transmitter to effectively learn about the jammer and conceive optimal countermeasure
actions such as adapting the transmission rate, backscattering, harvesting energy, or staying
idle. The system performance in terms of learning speed, throughput, and packet loss were
all significantly improved by the proposed algorithm.
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Figure 4.11: Anti-jamming attack in AmBC-CRN [Van+19].

Intercept/Eavesdrop

Eavesdropping is another common attack in wireless communications. Due to the broad-
casting nature of radio propagation, any active transmissions operated over the shared
spectrum by different wireless networks are extremely vulnerable to eavesdropping. It
is therefore important to investigate the confidentiality protection of SS communications
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against eavesdropping attacks.

There are two major categories of secure communication techniques that guard against
eavesdropping. One focuses on traditional cryptographic techniques and the other one
is based on the physical layer security. Cryptographic techniques involve encryption and
decryption of information at the transmitter and receiver. In the physical layer security
method, the secrecy rate can be achieved by the mutual information difference between
the legitimate user and the eavesdropper. However, the security rate can be limited since
it depends on the difference between the channel condition from the transmitter to the
legitimate receiver and that from the transmitter to the eavesdroppers. Many promising
techniques have been proposed to address this issue, including artificial noise (AN) and
cooperative jammer (CJ]). The advantage of physical layer security over cryptographic is
that it can achieve secure communications without extra overhead caused by protecting the
security key and can therefore be used in relatively simple communication systems.

As shown in Fig. 4.12, nondirectional forms of communication in AmBC networks are
prone to information leakage. Reducing the side lobe level is therefore crucial to preventing
eavesdropping. To this end, an ML-based antenna design scheme was proposed in [HLK19]
that achieved directional communication between transceivers by combining patch antenna
with Log Periodic Dual-dipole Antenna (LPDA). Aiming to limit the number of large
side lobes and reduce the Side Lobe Level (SLL), a multi-objective genetic algorithm was
proposed to optimize the antenna side lobe, gain, standing wave ratio, and return loss. It
was shown the proposed method could significantly reduce information leakage while
guaranteeing communication quality.

Ambient
source

Figure 4.12: Influence of antenna side lobes on communication. [HLK19].

4.3.5 Privacy Issues in SS Systems

Security normally refers to unauthorized /malicious access, change, or denial of data while
privacy normally refers to the unintentional disclosure of sensitive information from some
open-access data. The former is usually the work of malicious attackers who wish to disturb
the system. In the latter, malicious users usually only collect information that does not
immediately cause direct harm to the system. A seemingly harmless open dataset may
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contain clues to an individual’s private information in real life.

The protection of PUs privacy may not be addressed by strictly controlling access to the
database, since each SU must access it to enable the spectrum sharing process. One possible
solution might be to reveal obfuscated information instead of the original information to
SU queries. By doing this, the system can use the obfuscated information to help determine
the channel status while reducing leakage of PU’s privacy information.

ML algorithms require massive amount of data to train their models. These data usually
include a lot of user-specific sensitive info and need to be exchanged in some distributed
systems. Sensitive information may leak out during the training process that would have
remained secure using the above spectrum sensing procedure. Three main strategies may be
used to maintain privacy in ML work flow: differential privacy, homomorphic encryption
and Secure Function Evaluation (SFE)/Secure Multi-party Computation (SMC) [Li+20]. In
the differential privacy method, publicly shared dataset information describes the patterns
of groups within the dataset but withholds information about individuals. In homomorphic
encryption, the operation on encrypted data can be used to secure the learning process by
computing on encrypted data. When user-generated data are distributed among different
data owners, SFE can enable multiple parties to collaboratively compute an agreed-upon
function without leaking input information regarding any party other than what can be

inferred from the output.
Attacks on ML model
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Figure 4.13: Illustration of attacks to ML model.

Besides launching attacks based on the SS framework, attackers can also attack the ML
models. As shown in Fig. 4.13, a typical ML using data to train a model and then evaluating
the trained model with the test data can expose its workflow to various types of attacks:
Exploratory attacks, Evasion attacks, Poisoning attacks, Backdoor attacks, etc. [Shi+18a].

Exploratory attacks, also called inference attacks, discover how the underlying ML works
for an application. It usually maintains a surrogate model to mock the victim ML system
with the same input and output data types. Exploratory attacks aim to infer sensitive
and proprietary information of victim systems to launch vast subsequent attacks to it.
There are limited existing works that studied exploratory attacks for CRN networks and
corresponding defense methods [Shi+18b]. The attackers can sense the victims’ activities to
build an ML model, and defenders can also deliberately mislead the attackers” model.

Evasion attackers might trick the ML algorithm into making wrong decisions, such as
fooling a security algorithm into accepting an adversary as legitimate. It can be achieved
by manipulating the test data to mislead the model. Existing research on evasion attacks in
SS communication systems mainly focuses on misleading the classifier at the receiver side
by launching the spectrum poisoning attacks during the sensing phase. It aims to change
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the channel status features and forces the system to make wrong transmission decisions.
It should be noted that this attack differs from SSDF attacks because the attackers mainly
focus on injecting adversarial perturbations over the air to the channel instead participated
in CSS [Shi+18a] [SSE19].

Poisoning attacks, also called causative attacks, provide incorrect information such as
training data to the ML to cause the ML model to perform poorly. The poisoning attacks in
the context of SS networks have been investigated in [Luo+20], which can be achieved by
fooling the classifiers with spectrum data falsifications during the CSS phase, similar to
SSDF attacks.

Backdoor attackers train the ML model by deliberately misclassifying any input with an
added trigger to a specific target label. The attackers need to first construct the backdoored
data that contains a trigger within a subset of clean data and change their labels to the
target one. They then mix this backdoored data with clean data to train the model to learn
the original tasks and backdoor behaviors [Sal+20]. Backdoor attacks can be exploited
to help the attackers to pass the authentication system and grant unauthorized access
right. This can cause severe security and privacy consequences for ML-based SS networks,
such as ML-based database-assisted SS systems and distributed ML models-based defense
approaches.

Conclusions

This article investigates various technologies and mechanisms in applying ML in spec-
trum sharing and its related security and privacy. Four SS application scenarios were
first investigated, i.e., opportunistic access-based CRNs, database-assisted SS systems,
LTE-U/LTE-LAA networks, and symbiotic SS mechanism-based AmBC networks. A com-
prehensive investigation of state-of-the-art ML-based ML based SS solutions and their
performance gains were discussed. However, it has been noted that the dynamic access
and sharing paradigms of SS networks, as well as using ML in SS, may open the system
to many security and privacy concerns. Correspondingly two typical spectrum sensing
attacks were discussed, i.e., PUE and SSDF. Two common wireless attacks, i.e., jamming and
eavesdropping, during wireless access and transmission in the context of the SS network
were also discussed. Furthermore, connecting a large number of users and the application
of ML all require massive information exchanges, generating tremendous concerns about
privacy. The article further presented the state-of-art research on privacy protection for
SUs and PUs, as well as the use of ML mechanisms. Finally the article discussed possible
attacks on ML models and corresponding defending mechanisms.
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Abstract: Cognition has been a holy grail of artificial intelligence (Al) since more than
a decade. Simultaneously, the seminal works of Mitola and Haykin had articulated the
need to design so-called cognitive wireless networks that can mimic the human brain.
However, remarkably, to date, neither the Al nor the wireless communities have achieved
this much coveted “cognition” goal. In this position paper, we opine that achieving
cognition requires fundamental advances in the Al tools that are used today, particularly in
the wireless community. Towards this end, we first identify the key characteristics needed
to build next-generation AI frameworks that can achieve certain levels of cognition suitable
for wireless networks. These characteristics include reasoning faculties, generalizability,
lifelong learning, sustainability, explainability, and distributed, collective learning. We then
discuss the challenges and opportunities associated with deploying Al algorithms that can
meet those characteristics in wireless networks, while pinpointing recent advances in this
space within the wireless domain. In a nutshell, this position paper charts out a roadmap
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for designing next-generation Al frameworks that are apropos for building next-generation
Al-native wireless networks with concrete cognition abilities.

Introduction

The concept of a “cognitive” network emerged nearly two decades ago through the seminal
works of Mitola [MM99] and Haykin [Hay05] that envisioned the proliferation of human in-
telligence into wireless networks, through machine learning (ML) and artificial intelligence
(AI) techniques. In these seminal contributions, that created the whole field of cognitive
radio networks, the primary function of ML and AI was to enhance the observation and
management of the radio spectrum. Yet, despite the significant progress that cognitive
radio research has ushered in, the use of Al in real-world wireless systems remained insipid
for many years due to various barriers, some technical and others regulatory. However, the
massive advances in computing technologies, that led to the emergence of deep learning,
rekindled the interest in the design of Al-driven techniques to solve a plethora of problems
in the wireless networking domain, that go well beyond the classical Al-based spectrum
sharing and spectrum management techniques that were the major focus of cognitive radio
networks. This trend culminated in the emergence of the concept of Al-native wireless
systems in which the entire set of network functions, protocols, and processes are de-
signed from the ground up using Al-based algorithms. Indeed, academia, industry, and
standardization bodies are now working on defining the requirements needed to design
next-generation 6G wireless cellular systems as Al-native systems from the get-go.

However, remarkably, despite this massive interest in the use of Al for wireless system
design, existing efforts remain limited in a number of ways. First, recent efforts on Al-native
wireless systems (e.g., [Hoy+21]) primarily provide qualitative discussions on how such
systems could like, with the focus being on explaining how ML algorithms could replace
existing wireless functions. However, these works do not really specify the properties
and features that the AI algorithms must meet in order to effectively design the functions
of the wireless system. Meanwhile, the broad range of works that apply Al to wireless
networks, such as those in [Ayo+18; OH17; Che+21a; Zha+21; YC10] (and references
therein), primarily use existing ML and Al tools, such as deep Q reinforcement learning or
autoencoders, to either reproduce a wireless function (e.g., modulation) or solve complex
optimization problems (e.g., for resource management). Although these results significantly
contributed to advancing our understanding of the potential of Al for wireless systems,
they are limited in the following ways:

* Reliance on Big Data: Existing Al for wireless approaches still require significant
amounts of data for training. This reliance on “big data” hinders the adoption of the
designed algorithms in real-world wireless networks. Indeed, even if operators may
own or have access to sufficient datasets, designing algorithms that require massive
amounts of data to be trained and adapted will not be a scalable solution.

* Centralized Training: Many of the existing works require centralized training of the
ML frameworks and algorithms. Even some of the solutions that use distributed
multi-agent reinforcement learning may also adopt an offline, centralized training of
the agents before their deployment. This reliance on centralized training introduces
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an additional overhead that cannot be tolerated for future networks. As such, it is nec-
essary to go towards truly distributed solutions that can create collective intelligence
in the network.

Al Latency: Existing Al algorithms, particularly those that rely on reinforcement learn-
ing and computationally complex artifical neural networks (ANNSs), can introduce
significant latency when deployed in real-world networks. This latency can stem
from many aspects: a) the time needed for the algorithm to perform the prediction
or converge to a solution, b) the time needed for training; if done online, c) the com-
putational time, and d) the time needed to adapt to new, unseen environments. This
additional latency components will render to use of Al-based protocols unsuitable for
low-latency applications such as extended reality, the metaverse, and many others.
Reactive Protocols: Most of the existing Al frameworks operate in a reactive fashion.
This is particularly problematic when attempting to minimize any security threats to
the wireless network. Here, one needs to go from a reactive mindset to a proactive
one that can scrutinize and detect the root-causes of the problems.

Associational and Statistical Logic: Today’s Al frameworks are heavily reliant on ANNs
which model statistical relationships in the data and attempt to perform decision
making based on such relationships. Nonetheless, statistical relationships often fail to
to unravel the underlying structure of the data [Cha+22]. Given that such frameworks
fail to consider causality in the data, they fail to extract the root-causes of specific
events and data points that might have a crucial effect on performance.

Limited Adaptation to Unseen or New Environments: Most existing Al algorithms used in
wireless systems are primarily tailored to one environment and a single ML task. In
order to adapt to new environments or new tasks, existing solutions typically require
a re-training phase or a significant latency overhead to adapt to new, unseen environ-
ments. As such, existing solutions are mostly unreliable in face of unknown/unseen
environments and data points, which makes it difficult to adopt them in real-world
wireless networks.

Catastrophic Forgetting: Standard ANN architectures suffer from the problem of catas-
trophic forgetting, whereby the ML system completely and abruptly forgets previ-
ously learned information when it is presented with new information. For a wireless
network whose operation must be continuous and whose environments change
rapidly and often, such catastrophic forgetting significantly limits the effectiveness of
Al-based protocols that rely heavily on standard ANNS.

Lack of Performance Guarantees: Existing solutions for Al-based wireless designs often
lack the ability to provide performance guarantees for the designed algorithm, this,
in turn, has created a barrier of adoption in real-world systems.

Traditional siloed and rigid use-case approach: Existing solutions that adopt Al to predict,
optimize, and automate services while being “application-aware" are rigid and siloed.
Such approaches cannot be scaled to the versatile needs of the networking stack.
Each requirement or process is mostly managed and delivered through a separate
process [Sha+19; Che+19; TP18], which makes the deployed Al agent unaware of
potentially conflicting requirements.

The goal of this position paper is to revisit these limitations in existing Al algorithms
and chart out a path towards a next-generation of Al frameworks that meet several of
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Figure 5.1: Illustrative figure showcasing the six key characteristics of next-generation Al frame-
works for future wireless networks.

the requirements of future wireless systems, including the need for real-time distributed
operation, low latency, performance guarantees, reliability in face of unseen events, gen-
eralizability, and effective adaptation to new environments. In particular, we opine that
bringing true “cognition” to wireless systems requires fundamentally novel Al algorithms
and frameworks that can overcome the aformenetioned challenges. In the next section,
we provide a quick overview on the desiderata for next-generation wireless-centric Al
algorithms. Then, we delve into the details of each requirements, while outlining the
challenges, open problems, and early results.

Next-Generation Al for Next-Generation Wireless Systems: An Overview

The holy grail in Al research has always been the ability to design Al algorithms that can
mimic the human brain cognitive functions. In fact, this is where the term “cognitive” came
to be in the context of cognitive radio networks. There has been many recent attempts at
designing such brain-like Al algorithms, ranging from the whole area of artificial general
intelligence [GP07] which is the ability to create Al agents that can grasp and understand
any intellectual task that the human brain can, to the research that attempts to link Al
designs to the so-called System 2 brain model of Daniel Kahneman [Kah13].

Although these attempts provide meaningful analogies that are appealing for defining
future goals of Al, most of them remain within the realm of speculation and qualitative
discussions. However, from this rich literature, we can potentially draw a number of
human brain features that can be useful for designing a next-generation Al framework that
can overcome the challenges faced in the wireless domain, as outlined next.
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Which Al Do We Need?

To mitigate the previously outlined challenges faced in the wireless domain, it is necessary
to create the following desiderata that map the brain to the Al, as shown in Fig. 5.1:

* Reasoning Faculties: Reasoning faculties mainly stem from the ability to scrutinize
causal and associational relationships in the data. The duality of causal and associational
logic ultimately contributes to a knowledge base that mimics the human brain.

 Transferability and Generalizability: As a byproduct of reasoning faculties and causality,
a learning agent must be able to consolidate the logic acquired from a particular task,
and leverage this logic to a completely new and unseen task. This generalizability must
be invariant to the distribution or domain of the data points.

o Continual Lifelong Learning: Given a wireless problem that requires learning from
continuous datastreams over the course of time (e.g. mobility data, time series, etc)
it is necessary to acquire a robust knowledge base without falling into the caveat of
catastrophic forgetting. It is thus, necessary to study continual and lifelong learning
mechanisms from the lense of memory retention in order to eliminate catastrophic
forgetting [VT19].

¢ Explainability: Given that Al frameworks perform critical decision making (e.g. re-
mote surgery), the rationale behind such decision making must be backed with
explainability and interpretability. This explainability further enables improving
the trustworthiness of the end-user and industrial bodies in Al for critical wireless
services.

¢ Collective Brain Power: Reasoning faculties through causal and associational logic are
reflected via a knowledge base hinging at the end of every learning agent. To reach
a higher level of reasoning, given that a knowledge base mimics the human brain,
knowledge bases too like humans could brainstorm together, execute collective tasks.
Such a process enables learning agents and their corresponding knowledge bases to
acquire generalizable and specialized learning skills[Ngu+20].

5.3 Generalizable and Transferable Learning Skills for Wireless Networking

One of the most important brain-like features that next-generation wireless systems must
acquire is generalizable intelligence and transferable learning skills. In essence, when
learning a particular task (e.g. beamforming, association scheme, network optimization,
etc), the reasoning faculties of a learning agent, in a wireless network, must be able to use
the knowledge acquired, and transfer it to different settings. In essence, the knowledge
accumulated must enable the learning agent to have a directive that is invariant to: a) the
domain, b) the distribution, and c) the context of the task. For instance, a learning agent that
has acquired learning a beamforming scheme for millimeter-wave (mmWave) frequency
band channel, must be able to generalize and transfer their knowledge to a terahertz
(THz) or a visible light communication channel. Therefore a fundamental question that
the wireless research community must answer in the next few years is the following: How
can we design generalizable Al frameworks that can learn with “small data” and acquire
learning and reasoning skills rather than being biased towards a single learning task?
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Challenges and Open Problems

Naturally, to answer this fundamental question and achieve this ultimate generalizability
for next-generation Al systems, we must overcome multiple challenges when considering
wireless communication tasks, as discussed next.

* How to Define a Learning Task? The Al literature has recently witnessed a surge in works
on meta-learning, transfer learning, and multi-task learning [FAL17; Yu+20; Sun+19].
While such works have seen a success in static, supervised learning, and well-defined
use-cases outside the wireless domain such as robotics and image recognition; ex-
tending such concepts to wireless settings remains challenging and non-trivial. In
essence, these existing solutions hinge on gaining a generalizability on a task do-
main. In robotics, for example, tasks such as opening a bottle, opening the door and
many other rotational tasks share a large similarity. Nonetheless, in wireless settings,
multiple parameters are intertwined and the objective of one learning task is often
correlated with others. Thus, the very definition of a learning task within a wireless
setting is much more challenging than the computer vision counterpart. Second,
understanding the breadth and depth of the generalizability that can be achieved
with respect to one learning task depends on the level of dynamics surrounding the
task, as well as the intertwined objectives.

» Time-critical Generalizability: On top of the stringent generalizability requirement, a
large number of wireless tasks, particularly those at lower layers, require a high time-
criticality in the decision making process. Thus, if generalizability is achieved in a non-
timely manner, then the prediction performed or the decision made becomes obsolete
for the network. In fact, this requirement becomes of a higher significance when
migrating towards extremely high frequency bands like mmWave and THz, where
the coherence time of the channel is particularly small. In such cases, the deployed
learning agent must be fast and generalizable. Here, on the one hand, computing
advances must take place so that today’s Al frameworks can be executed in a faster
manner. On the other hand, novel out-of-the box Al frameworks that have a seamless
training period and near-real time inference time must be deployed. For instance,
the work in [Kas+20] proposed a generative adversarial network (GAN) approach
to pre-train a deep-reinforcement learning framework using a mixture of synthetic
and real datasets thus enabling the agent to assimilate a broad range of network
conditions. We called this pre-training “experience” since it mimics how humans
gain experience when meeting different tasks. This work has showcased a lower
trial-and-error period and can be deployed for time-critical services. For instance, in
Fig. 5.2 from [Kas+20], we showed how our proposed experienced deep reinforcement
learning algorithm can quickly adapt to sudden changes in the network conditions (a
traffic surge at epoch 100 in this figure), and this adaptation is much faster than that
of an agent that has no experience, and agents that have a limited experience (with
only synthetic or only real data, without using GAN). This showcases how reliability
can be instilled into the learning process itself through a simple GAN-based training
that can help overcome data scarcity by merging real datasets with synthetic datasets
using GAN. Clearly, this approach remains in its infancy given its reliance on a single
centralized learning agent and inability to learn versatile knowledge from multiple
learning agents.
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Figure 5.2: Reliability of experienced deep reinforcement learning in face of a sudden surge in
traffic at epoch 20. [Kas+20]

5.3.2 Opportunities and Potential Solutions

* From Statistical Learning to Causal Reasoning: Today’s Al frameworks are mostly
focused on ANNSs, which characterize the behavior of mechanisms based on the sta-
tistical relationships that govern the observed data points. Nonetheless, the behavior
of wireless networks is not solely governed by statistical logic. In fact, similar to our
daily life problems, one must unravel the causal relationships in the data. That said,
today’s Al state-of-the-art on causal learning is limited to causal graphs and causal
discovery. Here, one must consider the concept of structural causal models and extend
such concepts to characterize the behavior of wireless learning tasks. In [Cha+22], we
have shown that causality is a necessary ingredient in establishing a solid reasoning
faculty in semantic communication networks. We have also shown in [Cha+22] the
role of structural causal models in establishing generalizable, efficient, and minimal
semantic representations to ultimately communicate a robust and mature semantic
language. Moreover, under such causal-based analysis, one can potentially derive
performance guarantees, an aspect that is critical for wireless networks and that is
not possible with classical ANNSs.

¢ Towards Neurosymbolic Al: Understanding the behavior of a certain mechanism can
be performed via two different perspectives. On the one hand, connectionist Al
(the bigger umbrella that engulfs ANNs) postulates that learning associations from
data (with little or no prior knowledge) is necessary. Here, learning is centered
around understanding patterns of activation over the large connectionist network
established. On the other hand, symbolic Al postulates that learning must be centered
around symbol manipulation (e.g. graph algorithms, natural language processing,
etc). That said, a more comprehensive view must be able to capture these two
perspectives simultaneously. Neuro-symbolic Al is one form of integrating symbolic
and connectionist systems. In [TS22], we have shown that causality-based neuro-
symbolic Al can indeed help achieve minimal representations, create symmetric
communication channels, enable generalizability, and reduce the amount of data
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Figure 5.3: Neuro-symbolic (NeSy) Al as an effective tool for generalizability and improved
transmission efficiency in the context of emergent semantic communication (ESC) systems. [TS22]

transmitted (see Fig. 5.3 which shows how neuro-symbolic Al outperforms System 2
Al and probabilistic logic Al, ProbLog). Indeed, next-generation Al frameworks for
wireless systems must exploit the benefits of both connectionist and symbolic Al, and
one fertile area for this exploration is that of semantic communication [Cha+22; TS22].

Continual Lifelong Learning

Across the networking stack, multiple wireless problems occur in which continuous datas-
treams over the course of time (e.g. mobility data, time series, etc) must be analyzed and
used for prediction, optimization, or automation. Nonetheless, neural networks tend to
suffer from the caveat of catastrophic forgetting when learning multiple tasks sequentially.
Thus, it is necessary to propose new algorithms that can continually accumulate, organize,
and act on knowledge robsutly, without any gaps in the knowledge.

Challenges and Open Problems

* Breadth vs. Depth: Deploying continual learning (and its variants) to solve particular
wireless problems, enables gaining robustness versus the time domain, and a flavor of
time-variant generalizability. In fact, in [HCS22], we have shown that adopting a variant
of the elastic weight consolidation (EWC) technique enables digital twins (DTs) to
maintain accurate and synchronous representations of their physical application,
while preserving the history-aware nature of DTs and overcoming any increase in
the de-synchronization time. In particular, as shown in our sample result in Fig. 5.4
from [HCS22] the model’s robustness with respect to catastrophic forgetting is the
best when deploying continual learning. This is verified by measuring the model’s
accuracy on the first episode after training on each episode successively. Moreover,
our continual learning approach in [HCS22] can be further extended to optimize
time-critical Internet of Everything (IoE) services (e.g., connected autonomy, robotics,
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Figure 5.4: Accuracy (%) over the first episode versus iterations 1 [HCS22]

metaverse, and the likes) while addressing their various stringent quality-of-service
requirements. However, remarkably in continual learning, the knowledge of the
learning agent has evolved with respect to depth in the time domain. Here, to expand
the learning agent’s capability, one must investigate the design of new techniques
that can achieve a high generalizability (breadth) while simultaneously improving
their lifelong learning capabilities (breadth and depth simultaneously).

» Storage Requirements: The need for larger computing resources grows exponentially
with the emergence of Al for wireless. Nonetheless, on top of dynamic memory, con-
tinual learning requires large amount of storage to intelligently memorize the history
and mitigate catastrophic forgetting [CL18]. Here, it is necessary to explore mini-
malist techniques to store knowledge and historical memories. This is particularly
challenging when dealing with resource-limited wireless network devices.

5.4.2 Opportunities and Potential Solutions

* Hyper-game Continual Learning for Spectrum Sharing: The problem of spectrum sharing
in cognitive radio systems consists of a primary and a secondary user that interact
in a non-cooperative manner. Here, history-awareness is necessary for each of the
users, and thus, the AI model of each user must depend on a continual learning
model. That said, it is necessary to orchestrate the decision making process between
these users in a smooth, dynamic, and flexible scheme. Here, one can resort to game
theory [Han+12], in general, and hypergame theory [KGL15], in particular. Essentially,
hypergame theory is the amalgamation of game theory and decision theory, and
it provides a set of tools that can be used to characterize the interaction between
different users attempting to share the common spectrum. Clearly, this is a novel
and unexplored research direction that could help enhance the AI performance when
multiple noncooperative agents are interacting.

o Self-Attention Continual Learning for IoE Services: Equipping a learning agent with
breadth and depth simultaneously is necessary for future IoE services. Here, one
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approach that enables increasing the depth of continual learning mechanisms, is to
first attempt to tune the prior knowledge that can help in learning a sequence of tasks
continuously. This prior knowledge must have a good generality [SMP21; WKP21] that
enables improving the decision making respect vis-a-vis various dimensions (time,
domain, distribution). This can done via self-attention meta learning, which attempts
to initiate priors by fine-tuning attention models in the knowledge, so as to learn
general and specific representations as done in [SMP21]. Clearly, self-supervised and
self-attention learning is a nascent avenue that should be further researched so as to
mitigate the breadth vs depth dilemma in continual learning.

5.5 Distributed, Collective Intelligence

5.5.1

As already discussed, the next-generation of Al systems for wireless networks must be
able to operate in a fully distributed manner. In fact, collective intelligence itself requires
distributed sharing among multiple reasoning or learning agents that can work together
towards an end goal in the network. There has been two popular tools used to enable dis-
tributed learning in wireless networks: federated learning (FL) [Kon+16] (and its variants)
and distributed multi-agent reinforcement learning (MARL). One the one hand, FL has
been a very popular tool for enabling distributed learning. FL essentially enables a group
of agents to collectively learn one or more tasks of interest, by exchanging some sort of rep-
resentation of their individual learning frameworks (e.g., neural network weights). There
has been a surge of literature that exploited FL for various wireless networking contexts in
recent years [Che+20a; Che+21b; Yan+21; Che+21c; Zho+22; Le+21; Don+21]. These include
the use of FL to enhance data-driven learning of network parameters [Che+20a; Zho+22;
Le+21; Don+21] as well as the design of FL algorithms that can operate over real-world
wireless networks [Che+21b; Yan+21; Che+21c]. Meanwhile, MARL has been a popular
tool for solving challenging optimization problems in a distributed way. The key advantage
of MARL is that it enables a group of agents to execute either a common task or multiple,
interdependent tasks, in a distributed way. Therefore, MARL is a very appealing solution
for addressing a broad spectrum of wireless networking problems ranging from network
optimization to distributed coordination and control over wireless networks.

Challenges and Open Problems

Clearly, FL, MARL, and their variants are promising tools to instill distributed operation
into wireless networks, however, there are a number of challenges and open problems that
must be addressed:

* From distributed FL to swarm Al: Despite its advantages in distributed learning, FL. was
primarily motivated by privacy considerations, and its distributed nature was only
a “nice-to-have” feature. In fact, in its original form, FL still relied on a parameter
server that centrally controlled the process. A key challenge here is to design fully
distributed FL algorithms that can move from server-guided collaborative learning,
in which a group of agents can preserve their privacy while relying on a centralized
server to coordinate their learning towards collective, swarm intelligence in which
there are no central coordinators and, thus, agents can setup, on-the-fly, collaborative
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learning networks that can dynamically change. We took one step towards this end in
[Che+20b] whereby device-to-device links are leveraged to create local FL networks.
This prior work can be used as a stepping stone to design a fully distributed FL
framework that is closer to swarm Al Naturally, fully distributed swarm Al can
potentially help address many important wireless problems. Those range from
spectrum sharing problems among massive number of devices, each owned by
different operator, to the optimization of large-scale networks (e.g., swarms of drones,
massive deployment of small cells or reconfigurable surfaces, etc.).

» Complexity, Latency, and Reliability of MARL: One of the biggest challenges facing the
deployment of MARL in real-world wireless networks is the associated complexity
in coordinating the agents and enabling them to work together. Indeed, as the
number of agent increases, complexity increases significantly since the rewards will
now depend on the joint actions of all players and the computational complexity
needed to converge to an outcome also increases. In addition, when deployed in
wireless networks, issues of latency and reliability come into the picture. For instance,
a wireless network cannot afford a slow-to-converge MARL framework (e.g., for
managing resources, designing beamforming algorithms, etc.) that cannot react in
time to changes in the environment. Meanwhile, when supporting applications such
as extended reality or autonomous robotics, it is essential for the wireless system to
maintain reliable communication, i.e., connectivity must remain available even when
the system suffers extreme events (e.g., a deep fade or a surge in traffic). Existing
MARL solutions are not tailored towards such complexity, latency, and reliability
requirements and, thus, there is a need for new wireless-tailored MARL designs.

5.5.2 Opportunities and Potential Solutions

* Distributed and Generalizable Learning: As already outlined in previous sections, gen-
eralizability is quintessential for designing Al solutions that are fit for addressing
key problems in wireless networks. Generalizability can, in fact, help address some
of the latency and reliability challenges of existing distributed learning techniques
(including MARL and FL) by enabling fast out-of-domain, out-of-distribution, or
out-of-context generalization. In this regard, remarkably, most of existing FL solutions
remain restricted to classical learning tasks that do not exhibit generalizable proper-
ties (with a few exceptions that merged FL with domain adaptation [She+22]). Thus,
a key open problem here is to investigate the design of FL systems that are both fully
distributed and generalizable. Similarly, beyond some works on multi-task MARL,
there are very few works that incorporated generalizability with reinforcement learn-
ing. In [Hu+21], we studied how meta-learning can be combined with MARL in order
to enable generalization across distributions of tasks, within the context of wireless
networks serviced by drone base stations (DBSs). As shown in Fig. 5.5, generaliz-
ability through meta-learning can significantly reduce the convergence time of the
proposed algorithm (called meta-trained value decomposition reinforcement learning,
meta-trained VD-RL) compared to several baselines including an independent actor
critic (IAC) algorithm. However, this prior work was only limited to meta-learning
whose generalizability is limited. In contrast, there is a need for potentially integrating
more advanced tools, such as causality and/or neuro-symbolic AI within a MARL
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Figure 5.5: Meta-MARL for trajectory design in drone-assisted wireless networks [Hu+21]

framework. Naturally, such a generalizable MARL system will put forward important
convergence, optimality, and complexity questions, as already shown in our prior
work. In short, for future wireless systems to truly exploit the potential of Al, there is
a need for marrying distributed Al frameworks with generalizability concepts.

¢ MARL meets FL: To date, most prior works on MARL or FL in wireless have studied
these two frameworks separately. However, a key opportunity, that can pave the way
towards true swarm intelligence and that can help address some of the complexity
challenges of reinforcement learning, is to combine FL. and MARL within a single
framework. This can be done in at least two ways. First, one can use a two-step
solution in which the FL process is used to train the deep learning architecture of the
MARL process. We have explored this solution in [Che+20a], and we showed that it
can enhance the quality-of-experience (QoE) of extended reality services, compared
to using classical, centralized training of MARL. This early work can be used to build
more sophisticated two-step FL and MARL solutions. Second, one can directly design
a federated MARL process in which the FL learning task is a reinforcement learning
task and not a classification or regression task. This is typically known as federated
reinforcement learning (FRL) in the literature, and we have shown in [Abd+22] that
it can be used to effectively enable cooperative perception among vehicles. FRL is
definitely a fertile area that must be investigated, and its potential application to
wireless networks is still under-explored.

* Distributed, Green Al and Resource Constraints: Implementing any distributed solution,
including FL and MARL, will require computing, energy, and memory resources re-
sources at the devices. In a wireless network, many devices are resource-constrained,
and they may not be able to run sophisticated learning architectures or neural net-
works. Moreover, even at data centers, recent works have shown that Al algorithms
may consume significant energy and, thus, there is a need for green Al designs that
are sustainable and that can be deployed at real-world edge devices. In this regard,



52 IEEE ComSoc TCCN Newsletter (December 2022)

a
o
o

400

W
o
o

n
o
o

Total energy consumption [J]
Optimal level of precision n

-
o
o

0 . ! T
104 1078 1072 107! 10°
Target accuracy e

Figure 5.6: On the tradeoff between precision, accuracy, and energy in green FL [Kim+22]

a key opportunity is to investigate the fundamental question of finding an optimal
distributed learning architecture (within FL, MARL, or other frameworks) that can
not only maximize accuracy, but also minimize energy consumption and resource
usage at the end-devices. In [Kim+22], we have taken a first step towards this goal by
exploring the use of quantized FL architectures, and we have evaluated the associated
tradeoffs between precision, accuracy, and energy. However, quantization alone is
not sufficient, and it has its own disadvantages. As shown in Fig. 5.6 from [Kim+22],
a higher accuracy level requires larger total energy consumption and more bits for
data representation to mitigate the quantization error. However, quantization alone is
not sufficient to minimize energy efficiency and resource usage, and other approaches
must still be considered. Therefore, this area remains rich in opportunities for future
research.

e Scaling Distributed Learning: As already mentioned, a key challenge in distributed
learning is complexity, when the number of agents increases. This is more pronounced
for MARL, but it is also a challenge for FL. In this regard, in order to deploy distributed
Al architectures in a real-world wireless system it is necessary to understand how
to scale those algorithms to ultra dense networks with massive numbers of devices.
Here, tools such as mean-field theory can play a key role in enabling such scalability.

5.6 Conclusions

In this position paper, we have charted a roadmap towards achieving cognition in wireless
systems — a target that has been set since nearly a decade ago. In particular, we have studied
how next-generation Al frameworks must meet a number of important characteristics that
mimic the human brain. These include the need for generalizable intelligence, transferable
learning skills, continual learning, and collective intelligence. We have defined each
such characteristic and outlined key challenges and opportunities. For example, when it
comes to generalizability and transferability, we have investigated how causal learning
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and neurosymbolic Al, which constitute key pillars in achieving solid reasoning and
generalizability, will play a pivotal role for future wireless systems. We have also discussed
the challenges of continual lifelong learning and we highlighted the necessity of efficient Al
frameworks in breadth and depth for wireless. Subsequently, we discussed novel concepts
from hyper-game theory and self-attention learning. Such concepts open the door for
novel opportunities for continual learning in spectrum sharing and IoE services. Then,
we outlined the challenges and opportunities surrounding the design of fully distributed
collective intelligence in future wireless systems, while expanding upon known frameworks
such as FL and MARL. In a nutshell, this position paper laid the necessary foundations for
creating truly “cognitive” and Al-native wireless systems.
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Introduction

Machine learning (ML) has been considered a key enabler for next-generation (NextG) com-
munications systems to push the performance limits [Erpek2019; Letaief2019]. Supported
by advances in algorithmic capabilities, computational resources, open source software
libraries, and data generation and sharing efforts, deep learning (DL) has emerged as a pow-
erful solution to solve complex problems in wireless communications that have not been
feasible before by analytical and conventional ML approaches. To that end, deep neural
networks (DNNs) can effectively learn from the high-dimensional and dynamic spectrum
data and optimize the communication functionalities to keep up with the ever-growing
performance demands such as high rate, low latency, and energy-efficiency.

One key question is whether we can trust ML. This question can be decomposed to further
questions: Can we explain and account for how ML makes decisions? How robust is
ML as data characteristics may change from training time to test time? Can we repeat
or reproduce ML results? How do the ML decisions depend on uncertainties in wireless
systems regarding channel, traffic, interference, and hardware impairment effects? Can
we trust edge devices to perform ML? What are the security vulnerabilities of ML when
adopted in wireless communications? This paper will take a deep dive into the final
question regarding the new attack surface due to the growing use of ML in wireless
systems.

Learning in the presence of adversaries is studied under adversarial machine learning (AML)
[Goodfellow2015; Vorobeychik2018; Szegedy2013]. As a canonical example of an AML
attack borrowed from the computer vision domain, consider an API that classifies images
to labels such as panda or gibbon. High classification accuracy can be achieved by proper
training of a DNN with suitable data. As a stealthy attack, the adversary can add a small
perturbation (that cannot be detected by visual detection) to the pixels of a panda image
before sending it to the classifier. Then, the classifier is fooled into classifying this perturbed
image as gibbon.

While the DNNSs can capture the intrinsic properties of wireless communications (such
as waveform, channel, interference, traffic, and hardware effects), the complex decision
space of the DNNSs is highly sensitive to even small variations in inputs. Therefore, the
DNNs used in wireless system are vulnerable to attacks, where smart adversaries tamper
with the training and/or test (inference) time operations of the DNNs and fool them into
making errors in their decisions [Sagduyu2020; Adesina2022; Liu2022]. In training time,
the adversaries can manipulate the training data and prevent the DNN models from being
trained properly such that they cannot perform well later in test time. In test time, the
adversaries can manipulate the input samples such that the DNN models make wrong
decisions.

This paper discusses the applications of the AML attacks to the wireless domain in terms
of their unique properties, opportunities, and challenges including over-the-air attacks,
channel effects, broadcast transmissions, synchronization effects, multiple antennas, and
vulnerabilities due to open-source development of radio access network (RAN) archi-
tectures. Various vulnerabilities of the NextG communications systems are presented by
discussing the AML attacks on wireless signal classification, spectrum sharing, initial access,
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power control, MIMO, end-to-end autoencoder communications, and network slicing.

The remainder of the paper is organized as follows. Section 6.2 presents a general overview
of the AML attacks. Section 6.3 discusses defense mechanisms against AML the attacks.
Section 6.4 describes the properties, opportunities and challenges of the AML attacks in the
wireless domain. Section 6.5 discusses the AML attacks on different components of NextG
communications. Section 6.6 concludes the paper.

Adversarial Machine Learning Attacks

This section reviews various ways to launch attacks built upon AML.

e Inference (exploratory) attacks seek to learn how the victim ML algorithm functions.
By observing the input-output relationships (or their noisy variants), the adversary
builds a surrogate model to mimic the victim model behavior, as depicted in Fig. 6.2.
This surrogate model can be used to launch subsequent attacks (such as brute-force
jamming or other AML attacks) on the victim model. One challenge is that the
adversary may need a large number of samples to train a high-fidelity surrogate
model. This may not be possible or it may take long to collect these samples delaying
the start of the attack. Therefore, the adversary can augment the training data, e.g.,
by generating synthetic samples with generative adversarial networks (GANs). The
adversary can also pursue active learning to reduce the number of training samples
needed. For that purpose, the adversary repeatedly collects training samples based on
the trained surrogate model and then updates the surrogate model with new samples
to improve it over time.

Test Time
Victim Model
® o
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e o
1 _J
« 9
[
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Figure 6.1: Inference (exploratory) attack.

¢ In test time, adversarial (evasion) attacks seek to manipulate the input samples of
the victim model (e.g., by adding a small perturbation) such that it cannot make a
reliable decision for these samples, as illustrated in Fig. 6.2. The effect of this attack
is measured by the model accuracy for the manipulated input samples (the lower
accuracy indicates a more effective attack). The perturbation is selected by minimizing
the perturbation strength subject to the condition that an error occurs in the decision
of the victim model. Since solving this optimization problem is difficult, Fast Gradient
Method (FGM) can be applied by linearizing the loss function and using the gradient
of the loss function when crafting the perturbation. Other attack methods include
Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM), Projected Gradient
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Descent (PGD), Momentum Iterative Method, DeepFool, and Carlini Wagner (C&W).
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Figure 6.2: Adversarial (evasion) attack.

¢ In training time, poisoning (causative) attacks seek to manipulate the training data of
the adversary, namely, modify some of the features and labels, as illustrated in Fig. 6.3.
When trained with the poisoned samples, the fidelity of the DNN model would drop
for all input samples in test time. When selecting which samples to poison, the goal is
to maximize the impact on the decision space of the trained DNN. The larger decrease
in the accuracy of the trained model indicates a more effective attack.
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Figure 6.3: Poisoning (causative) attack.

* Backdoor (Trojan) attacks take place in both training and test times, as shown in Fig. 6.1.
The adversary inserts insert triggers to some training samples in training time and
then activate them in test time such that the poisoned model makes errors in test time
only for selected input samples that are poisoned with the same triggers. The effect of
this attack is measured by (i) the model accuracy for poisoned test input samples (the
lower accuracy indicates that the attack is more effective) and (ii) the model accuracy
for unpoisoned test input samples (the higher accuracy indicates that the attack is
stealthier).

For stealthy attacks, it is necessary to impose realistic constraints on the attack vectors. For
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Figure 6.4: Backdoor (Trojan) attack.

example, an upper bound on the perturbation strength can be imposed for adversarial
attacks. In the wireless domain, the perturbation strength is expressed as the perturbation-
to-noise ratio (PNR) that measures the perturbation strength relative to the noise power
[Sadeghi2018]. The smaller the PNR is, the stealthier and more energy-efficient the attack is.
For poisoning and backdoor attacks, an upper bound is imposed on the number of poisoned
samples such that the smaller number indicates that the attack is stealthier [Sagduyu2019;
Davaslioglu2019].

With AML, it is possible to launch targeted and non-targeted attacks. The targeted adversarial
attacks aim to cause errors only for input samples from a specific set of classes by minimiz-
ing the loss function of the victim DNN with respect to the target class. The non-targeted
adversarial attacks aim to cause errors for all input samples by maximizing the loss function
of the victim DNN for all classes.

The AML attacks can be launched in black-box or white-box settings. In white-box attacks, the
adversary knows the model and/or the training data. To relax this assumption for a black-
box attack, the adversary can build a surrogate model and use it (instead of the unknown
victim model) for subsequent attacks. In a membership inference attack, the adversary can also
infer whether a sample has been used in the training data of the victim model [Shi2020;
Shi2022].

If the adversary does not know the test samples for the adversarial attack, it needs to build a
universal adversarial perturbation (UUAP) that is agnostic to test samples [Moosavi-Dezfooli].
The UAP can be built by first generating attack vectors for different (potential) input
samples and then reduce their dimension (e.g., by autoencoder and principal component
analysis (PCA)) to a common attack vector that can be used against different (unknown)
input samples [Sadeghi2018].

The goal of the AML attack depends on the victim model. The AML attack on a DNN (such
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as feedforward, convolutional and recurrent neural networks) seeks to reduce its accuracy,
The AML attack on reinforcement learning (RL) also seeks to increase the convergence time
for RL [Shi2021; Wang2022; Shi2022-2; Shi2021-2].

Defense against Adversarial Machine Learning Attacks

The AML attacks can be counteracted by proactive and reactive defenses. The victim model
can be made more robust against adversarial perturbations by different proactive defenses:

* Gradient masking (gradient obfuscation) prevents the victim model from having useful
gradients (that may be exploited by the adversaries) by using a simple classifier
instead of a DNN [Papernot2017].

e Distillation trains the DNN by using the knowledge extracted from a DNN to improve
its own resilience to adversarial samples [Papernot2016].

* Adversarial training creates adversarial examples and incorporates them into the
training process by anticipating perturbations added to the input samples in test time
[Madry2017].

* Randomized smoothing augments the training data by adding noise samples to data
and makes the DNN robust to adversarial perturbations in test time [Cohen2019].

o Certified defense guarantees the model robustness against adversarial attacks by aug-
menting the received signals with Gaussian noise samples in test time and checking
statistical significance of model decisions [Raghunathan2018].

Beyond the proactive defenses, a reactive defense seeks to detect attacks [Metzen2017;
Lee2018]. For that purpose, the DNN can be augmented with a small detector subnet-
work that is trained to detect data samples with adversarial perturbations.

Since many AML attacks start with an inference attack that builds a surrogate model, a
defense mechanism is to increase the adversary’s uncertainty by introducing controlled
errors in victim model decisions. These errors poison the training data of the adversary and
prevents it from building a reliable surrogate model. However, this defense also reduces
the model performance in the absence of an attack. Therefore, the defender may prefer
to apply the defense not all the time. There is also an incentive for the adversary not to
launch an attack all the time because the attack is more effective in the absence of a defense
and there is a cost of launching an attack (for training data collection and surrogate model
training). These interactions can be formulated as a non-cooperative game, where the attack
and defense mechanisms select their randomized strategies. The, the Nash equilibrium
strategies correspond to operation modes such that the attacker or the defender cannot
unilaterally improve its utility given the other’s strategy is fixed [Sagduyu2022].

Properties, Opportunities, and Challenges of Adversarial Machine Learning
in the Wireless Domain

There are unique properties, opportunities and challenges in the wireless domain that the
adversary needs to consider when launching the AML attacks. Fig. 6.5 illustrates how
adversarial attacks depend on channel effects, broadcast transmissions, and potential use
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of multi-antenna configurations in wireless systems.
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Figure 6.5: Wireless properties in the context of adversarial attacks.
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* Qver-the-air attacks and channel effects: As a wireless transmitter, the adversary cannot

directly manipulate the sample inputs to the victim model that resides at another
receiver. The adversary needs to consider channel effects when launching an AML
attack. For an adversarial attack, the adversary needs to determine the perturbation to
be transmitted by accounting for the channel effects that the perturbation and victim
signals will individually experience when reaching the receiver [Kim2022; Kim2020].
This attack is selective in the sense that the perturbation designed for a particular
channel is only effective against the receiver that experiences this particular channel
and not effective against other receivers with different channels.

This channel-aware attack paradigm is different from attacks in different data domains
(e.g., computer vision or NLP) where the adversary can directly query the victim
models and directly manipulate their inputs. Adversarial attacks are known to
be transferrable, i.e., attacks trained against one model may be effective against
other (potentially unknown) models [Papernot2016-2]. However, the discrepancy
between the surrogate model and the victim model may render the transferred attacks
ineffective. In an inference attack for a wireless system, the adversary can overhear the
transmissions that follow from the victim model’s decisions and builds the surrogate
model without directly querying the victim model. However, this surrogate model
may differ from the victim model significantly because the adversary and the receiver
(where the victim model resides experience) different channels and their models are
trained with different distributions of inputs [Kim2021].

Broadcast transmissions: Wireless signals can be broadcast with omnidirectional trans-
missions. Therefore, the adversary can reach and manipulate multiple models at dif-
ferent receivers with a single transmission of a common perturbation. This paradigm
is different from other data domains where the adversary needs to attack each victim
model (e.g., at different APIs) separately. This broadcast property can be exploited
by the adversary to reduce the time and energy spent for the attack on multiple
models. The broadcast attack can generate perturbations for DNN models at different
receivers and then combine them to a common attack vector [Kim2022]. Alternatively,
the adversary can extend the underlying optimization problem to select a common
perturbation for all receivers.
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* Synchronization effects: The perturbation transmitted by the adversary s not neces-
sarily aligned in time with the transmission of the victim transmitter. Since the
adversary is not typically synchronized with the victim transmitter, there is a shift
between the transmitter and perturbation signals. To that end, a shift-invariant per-
turbation should be generated by accounting for potential synchronization effects
[Sadeghi2018].

* MIMO communications: Both the adversary and the receiver with the victim model may
use multiple antennas. By using multiple transmit antennas, the adversary has more
degrees of freedom to determine different perturbations for different antennas. The
superpositions of these perturbations are received at potentially multiple antennas of
the receiver. Therefore, the adversary needs to consider both the power allocation
among antennas and the utilization of channel diversity when crafting adversarial
perturbations [Kim2022-2; Kim2020-2]. For a similar effect, multiple adversaries at
different locations, each with a single antenna, can transmit perturbations that are
induced by channel effects and superimposed at the receiver. This way, they can
jointly build a perturbation that is more effective than what a single adversary can
achieve. The input size of the victim model increases with the number of receive
antennas. As this property increases the complexity of the victim model, the adversary
needs to adapt its attack to a more difficult setting while exploiting multiple entries
of the attack surface.

® Open Nature of NextG Software Development: Open source software development has
been a catalyst for fast and collaborative progress of 5G and beyond RAN technologies.
O-RAN provides an open RAN architecture with virtualized network elements and
interfaces. Various RF applications of ML can be implemented as xApps in the near
real-time RAN intelligence controller (Near-RT RIC) of O-RAN. These xApps can be
offered in a market place and adopted as part of RAN development efforts. An
adversary can exploit the openness of the software development in various forms.
First, it can get access to the training data or the trained model through the xAPP
for a NextG application. Then, it can train a reliable surrogate model to construct
adversarial attacks on NextG communications systems that utilize this particular
xApps. Second, the adversary itself may be the one offering the xApp that is built
upon the training data samples or trained models poisoned with backdoors. Then, it
is possible to fool the ML engine of a NextG communication task by activating the
triggers for selected input samples in test time.

* Defense Mechanisms against the AML Attacks in the Wireless Domain: The DNNs used
for wireless applications can be made more robust against the AML attacks by proac-
tive defense methods such as randomized smoothing [Kim2022], certified defense
[Kim2022], and adversarial training [McClintick2022]. In addition, frequency do-
main features [Sahay2021] and forward error correction codes [Del Vecchio2020] can
be used to mitigate the effects of adversarial attacks. On the other hand, reactive
methods based on statistical outlier detection can be applied to detect the adversarial
perturbations and triggers in test time [Davaslioglu2019; Filipovic2019].
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Vulnerabilities of NextG Communications to Adversarial Machine Learning

Attacks on Wireless Signal Classification

One prominent application of DL in the wireless domain is the classification of wire-
less signals that needs to capture waveform, channel and radio hardware effects jointly.
Over-the-air received signals need to be classified for various purposes including spec-
trum sensing, waveform recognition (e.g., modulation classification), device identifica-
tion, user equipment (UE) authentication, RF fingerprinting, and mobile crowdsens-
ing. Various adversarial attacks have been considered against wireless signal classi-
fiers [Sadeghi2018; Kim2022; Kim2020; McClintick2022; Sahay2021; DelVecchio2020;
Filipovic2019; Lin2020; Bahramali2021]. These attacks can be launched by transmitting
perturbations over the air and interfering with the transmitted signals to fool the wireless
signal classifier into returning wrong labels based on the received signals. On the other
hand, backdoor attacks can be launched by adding specific phase shifts as triggers in the
training data of the wireless signal classifier. In test time, the adversaries can transmit
signals with these specific phase shifts and deceive the wireless signal classifier only for the
selected input samples (e.g., for infiltration of an authentication system) [Davaslioglu2019].

As an example, consider a targeted adversarial attack on a wireless signal classifier. A trans-
mitter transmits signals modulated with BPSK or QPSK over an additive white Gaussian
noise channel with 5dB signal-to-noise ratio. A DNN at the receiver classifies the received
signals to BPSK and QPSK. The input consists of 16 I/Q samples and the DNN consists of
dense layers of size 128, 32, 8, and 2 (with ReLU activation) separated by dropout layers
(with dropout rate 0.2) and followed by the output layer (with SoftMax activation). An
adversary seeks to change the DNN's output labels to QPSK for the BPSK-modulated sig-
nals by transmitting perturbations generated by FGSM. Fig. 6.6 shows that the adversarial
attack reduces the classifier accuracy significantly and the FGSM-generated perturbation is
much more effective than Gaussian noise.

Attacks on Spectrum Sharing

For efficient utilization of the spectrum, NextG communications systems are envisioned to
share the spectrum with the incumbent (high-priority) users. One example is the 3.5GHz
Citizens Broadband Radio Service (CBRS) band that has been reserved for the incumbent
user such as radar and recently opened to the use of commercial systems. To prevent
harmful interference to the incumbent user, the Environmental Sensing Capability (ESC)
sensors need to detect the incumbent signals. Then, the Spectrum Access System (SAS)
reconfigures the NextG network to prevent harmful interference to the incumbent users. By
monitoring the spectrum, the adversary can launch an inference attack to build a surrogate
model based on its sensing results to predict when a successful NextG transmissions
will occur. Then, the adversary can effectively jam these NextG transmissions [Shi2018;
Erpek2019-2; Sagduyu2021]. In case of cooperative spectrum sensing, spectrum sensors can
falsify their spectrum sensing results when reporting them to the fusion center in form of a
poisoning attack [Luo2022]. Spectrum sensing can be also performed by federated learning
(FL) [Shi2022-3]. In a wireless setting, FL is subject to selfish (free-riding) clients that may
refrain from participating in model updates due to transmission costs [Sagduyu2022-2]. In
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Figure 6.6: Adversarial attack on wireless signal classification.

addition, the adversary can attack FL by jamming model updates exchanged between the
server and the clients. For that purpose, the adversary selects which clients to attack in
order to reduce the global server accuracy [Shi2022-4; Shi2022-5].

Beyond brute-force jamming of data transmissions, the adversary can also falsify the
spectrum sensing data over the air by transmitting during the spectrum sensing period
[Sagduyu2019]. If the sensing results are used as test data to make NextG transmit decisions,
the adversary fools the NextG system into making incorrect decisions in detecting the
incumbent signal (adversarial attack). If the sensing results are used as training data to
retrain the DNN for spectrum sensing over time, the DNN for spectrum sensing is retrained
incorrectly for future decisions (poisoning attack). As an outcome of these attacks, either
a false alarm occurs, namely the performance of NextG communications drops due to
the transmission opportunities, or a misdetection occurs, namely harmful interference is
created for the incumbent user. These attacks with low spectrum footprint are hard to detect
and energy-efficient as they do not directly jam data transmissions but make low-power
transmissions during sensing time.

Attacks to Facilitate Covert Communications

Adversarial attacks can be utilized to hide wireless communications from an eavesdropper
that can employ a DNN classifier to detect transmissions of interest. For covert communi-
cations, a transmitter can add a perturbation to its own signal before transmitting it over
the air to its receiver [Hameed2021]. This perturbation is carefully selected to be effective
with respect to the channel from the transmitter to the adversary but does not significantly
impact the communications performance, e.g., the bit error rate, experienced over the
channel from the transmitter to the receiver. Instead of adding the perturbation directly to
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the transmitted signal, a cooperative jammer that is physically distant from the transmitter
can transmit adversarial perturbations over the air to fool the eavesdropper into classifying
the received superposition of (transmitter and perturbation) signals as noise. [Kim2022-3;
Kim2022-4; Kim2022-5]. Multiple cooperative jammers can also coordinate with each other
and transmit perturbations that are superimposed at the receiver to boost the adversarial
attack against eavesdropping.

Attacks on Initial Access

Operation at high frequencies such as mmWave and THz is ultimately needed for NextG
communication systems to achieve high data rates over wider frequency bands. However,
this paradigm rises the need for communications with narrow directional beams. When a
UE connects to the network for the first time, it needs to establish the initial access with the
base station. For that purpose, the base station transmits pilot signals with different narrow
beams and the UE computes the received signal strengths for all beams and finds the most
suitable beam. Since sweeping all beams takes long, a DNN can be trained to predict the
beam that is best slanted to each UE by using the received signal strengths from a smaller
set of possible narrow beams. As an attack on the DNN for initial access, an adversary can
generate adversarial perturbations and transmit them over the air during the initial access.
This way, the adversary manipulates the received signal strengths and consequently the
inputs to the DNN used for beam prediction. This over-the-air attack can reduce the initial
access performance significantly by fooling the DNN into choosing the beams with small
RSSs [Kim2021-2].

Attacks on Power Control

Transmit resources need to be allocated by the NextG base stations to optimize the commu-
nication performance of the UEs. For example, to optimize the achievable rates, the base
station allocates transmit power to multiple subcarriers to serve multiple UEs. DL provides
a low-complexity solution to solve the underlying non-convex optimization problem by
training a regression model that takes channel gains as the input and returns the allocated
transmit powers as the output. This model for power control is vulnerable to adversarial
attacks that aim to minimize the total rate achieved across all UEs. The adversary may be
an external transmitter that transmits an adversarial perturbation and interferes with the
pilot signals transmitted to measure the channel. Or, the adversary may be a rogue user
equipment that sends falsified channel gains (with perturbations added) to the base station.
In both cases, the adversary manipulates the inputs to the DNN used for power allocation.
These attacks can effectively reduce the rate of communications while remaining robust to
the uncertainty at the adversary regarding channel gains [Kim2021-3].

Attacks on MIMO Communications

Another way of using DL for power control is for multi-cell massive MIMO communications.
A regression model can be trained to maximize the aggregate performance, such as the
product of signal-to-interference-and-noise ratios, across all users [Sanguinetti2018]. The
input to the DNN consists of the geographical positions of the UEs. The output is the
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set of transmit powers allocated to the UEs. The training data is obtained by solving the
optimization problem with conventional high-complexity methods. To attack this DNN, the
rogue UEs manipulate the inputs to the trained model by falsifying their reported location.
This attack is effective in making the power control solution infeasible such that the power
constraints are violated [Manoj2021].

Attacks on End-to-End Autoencoder Communications

In addition to optimizing various transmitter and receiver operations, DL can be used
for the clean-slate design of the transmitter-receiver chain, e.g., communication blocks
can be modeled as an autoencoder system. The modulation and coding operations at
the transmitter are modeled as an encoder, whereas the demodulation and decoding
operations at the receiver are modeled as a decoder. The encoder maps to the input symbols
to modulated signals. These signals are transmitter over a wireless channel and then
mapped by the decoder to reconstructed the symbols. This encoder-decoder pair is jointly
trained to minimize the error rate by accounting for the channel effects. This approach
improves the end-to-end performance compared to conventional communication schemes
[Erpek2019]. An adversary canjam the transmission to increase the error rate at the expense
of using high power budget. On the other hand, the adversary can launch an adversarial
attack on the autoencoder communications system by transmitting carefully-crafted small
perturbations to interfere with the signals received by the decoder. This way, the adversary
can manipulate the input of the decoder and prevent the reliable reconstruction of the
symbols [Sadeghi2019].

Attacks on Radio Access Network Slicing

5G has introduced the RAN slicing capability that multiplexes and serves multiple vir-
tualized and independent logical networks on the same physical network to secure and
prioritize different services. The static allocation of communication and computation re-
sources is replaced by reserving them on the fly to match the dynamic user demand in
terms of quality of experience (QoE) requirements such as high rate and low delay. The
admission control and resource allocation for network slices can be practically implemented
in Near-RT RIC of O-RAN. The underlying optimization problem is complex since available
resources and demands change over time and coupled. Instead of training a static model to
make admission control and resource allocation decisions, RL can be used as a model-less
approach, where the reward is the weighted number of accepted requests (weights corre-
spond to priorities of network slices), the states are the available resources, and the actions
are to admit or reject slicing requests and to allocate the necessary resources [Shi2020-2].

While RL is effective in maximizing the reward compared to myopic or random decision
schemes, it is also susceptible to attacks. For that purpose, an adversary can jam the resource
blocks. However, this jamming does not need to be brute-force and does not have the sole
objective of making transmissions fail. Instead, the objective is to fool the learning process
over time by manipulating the reward so that RL deviates from its ideal operation and
cannot recover for a while even after a short episode of jamming ends [Shi2021; Wang2022;
Shi2022-2]. Again, the first step is to build a surrogate model. To that end, it is also possible
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to utilize inverse RL to identify the reward and other structural components of the RL
mechanism by probing the execution traces. Another attack on RAN slicing is the flooding
attack, where an adversary generates fake network slicing requests to consume the RAN
resources that would be otherwise available to real requests of network slices. By using
its surrogate model, the adversary decides on how to craft fake requests to minimize the
reward of real requests over time. This attack can significantly reduce the portion of the
reward achieved by real requests [Shi2021-2].

Conclusions

As ML finds more applications in NextG communications systems, the attack surface
expands due to the AML attacks that target the ML engines. First, the AML attacks in
test and training times, and the corresponding defenses were described. Then, the unique
properties, opportunities and challenges were presented for the AML attacks when applied
to the wireless domain. Finally, the vulnerabilities of NextG communications systems
to the AML attacks were discussed. As wireless communications systems rely more on
ML to perform difficult tasks, this strong reliance opens the door to novel attacks by the
adversaries that exploit the vulnerabilities of ML engines in NextG communication systems.
Therefore, it is imperative to pay more attention to the characterization of this emerging
attack surface and design mechanisms to protect NextG communications against the AML
attacks.
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