Leveraging Blockchain-based protocols in IoT systems

Angelos Stavrou
Talk Outline

- Overview of IoT
- Security Failures in IoT: Motivating Use Cases
- Why direct use of Blockchain is not practical for IoT
- **Challenge**: Design practical Blockchain-based protocols for IoT
- Conclusions, Discussion & Challenges
Internet of Things Defined

• Kevin Ashton introduced the term Internet of Things (IoT) in 1999

• Network of devices able to configure themselves automatically

• Human is not the center of the system

• **Motivation**: Better understanding of the environment and response to certain events. Machines are doing better in sensing & reporting on conditions

• **Fact**: Applications of traditional Internet are different than the applications of IoT
Cyber Security is not a Design Tenet

What is the Fundamental Problem?

• Devices operate using non-verified or tested software
 - outdated software
 - custom-made software
 - software from many vendors
 - modular software from many different vendors
 - poorly tested software
 - software that was designed for a different set of requirements
 - unpredictable & chaotic software

There is NO Industry incentive to build Secure Systems (Software or Hardware)
What the Future Holds

Drivables

[Image of a car]

[Image of a Mars rover]

Flyables

[Image of a drone]

[Image of a flying robot]

Scannables

[Image of a QR code reader]

[Image of a scanner]

Wearables

[Image of a wearable device]

[Image of a person wearing a smartwatch]

[Image of a person wearing a smartwatch]
The Growth of IoT
Sectors of IoT Applications

- **Smart Home**
 - Home automation
 - Energy efficiency
 - Home security

- **Transportation**
 - Road safety
 - Traffic regulation
 - Law enforcement

- **Retail**
 - Automatic payments
 - Efficient cataloguing
 - Shipment tracking

- **Industry**
 - Quality assurance
 - Failure prediction
 - Productivity improvement

- **Healthcare**
 - Condition monitoring
 - Remote treatment
 - Personalized advices
Sensors & Actuators

Sensors

Actuators
Connectivity

WAN
- 2G
- 3G
- 4G

LAN
- Wi-Fi
- 5G

PAN
- LoWPAN
- Z-WAVE
- ANT
- Bluetooth

IPv6
Talk Outline

• Overview of IoT

• Security Failures in IoT: Motivating Use Cases

• Why direct use of Blockchain is not practical for IoT

• **Challenge**: Design practical Blockchain-based protocols for IoT

• Conclusions, Discussion & Challenges
Common Security Incidents

- Private Data Collection: 90
- Insecure Interfaces: 60
- Unencrypted Communications: 70
- Weak Requirements: 80
Top 10 Vulnerabilities (OWASP)

- **Insecure Web Interfaces**
 - Default accounts, XSS, SQL injection

- **Inefficient Authentication/Authorization**
 - Weak passwords, no two-factor authentication

- **Insecure Network Services**
 - Ports open, use of UPnP, DoS attacks

- **Lack of Transport Encryption**
 - No use of TLS, misconfigured TLS, custom encryption

- **Private Data**
 - Unnecessary private information collected

- **Insecure Cloud Interfaces**
 - Default accounts, no lockout

- **Inefficient Mobile Interfaces**
 - Weak passwords, no two-factor authentication

- **Insufficient Security Configurability**
 - Ports open, use of UPnP, DoS attacks

- **Insecure Software/Firmware**
 - Old device firmware, unprotected device updates

- **Poor Physical Security**
 - Exposed USB ports, administrative accounts
Use Case: Bluetooth Low Energy Beacons

• Beacons Purpose:
 – Provide inexpensive remote identification
 – Proximity estimation
 – Low power consumption

• BLE modules are integrated with smartphone devices

• Hardware requires very little energy
 – Easy to maintain and have a small footprint

• Achieve accurate proximity estimation even in indoor scenarios
 – Better than GPS

• Identification can be achieved across considerable distances
 – Better than RFID
What Can Go Wrong?

• Existing BLE Beacon specifications naively omit protection in message structure
 – Apple’s iBeacon, Google’s Eddystone, Altbeacon

• Vendors claim that BLE Beacon applications are not security & privacy sensitive

• Current Applications can be abused
 – Denial of service or loss of revenue

• What about future applications?
 – Automatic payments
 – Automatic Check-In
 – Authorization to Restricted Areas
 – Access control to devices (e.g. workstation)
Underlying Design Problem

• Transmission of a static identifier
• Constant broadcasting of that identifier
• Long range transmissions (75 meters)
Attacker Capabilities

• Open source software for monitoring
 – Bluez, Ubertooth, others

• Inexpensive hardware
 – USB adapter (Sena UD100 Long Range Bluetooth 4.0 Class1 USB adapter)
 – High gain antennas (RP-SMA 2.4GHz 7 DBI)
 – Discrete portable devices (e.g. Raspberry Pi)
Attack: User Profiling
Attack: Presence Inference

• Tracking & Reporting the presence of a target within an area
• Target must carry a portable, beacon-emitting object
• Inexpensive equipment can boost the range to more than 300 meters radius
 • Typical range is 75 meters
Why not Use Cryptography?

RSA 1024 Runtime Overhead:

<table>
<thead>
<tr>
<th>Device</th>
<th>Clock Speed</th>
<th>Implementation Type</th>
<th>100% C Implementation</th>
<th>Mixed C/AVR Assembly Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino UNO</td>
<td>16Mhz AVR</td>
<td></td>
<td>12596 ms*</td>
<td>8504 ms#</td>
</tr>
<tr>
<td>Arduino Leonardo</td>
<td>16Mhz AVR</td>
<td></td>
<td>12682 ms*</td>
<td>8563 ms#</td>
</tr>
<tr>
<td>Arduino Mega</td>
<td>16Mhz AVR</td>
<td></td>
<td>12596 ms*</td>
<td>8504 ms#</td>
</tr>
<tr>
<td>Arduino Due</td>
<td>84Mhz ARM</td>
<td></td>
<td>1032 ms*</td>
<td></td>
</tr>
<tr>
<td>Arduino Yún</td>
<td>16Mhz AVR + 400Mhz MIPS</td>
<td></td>
<td>707 ms*</td>
<td></td>
</tr>
<tr>
<td>Intel Galileo</td>
<td>400Mhz x86</td>
<td></td>
<td>192 ms*</td>
<td></td>
</tr>
</tbody>
</table>

* these numbers are based on a 100% C implementation

these numbers are based on mixed C/AVR assembly implementation

Some of the traditional Crypto is too “expensive” for embedded devices
Survey of Crypto Support in IoT

<table>
<thead>
<tr>
<th>Brand</th>
<th>Name</th>
<th>CPU</th>
<th>Freq.</th>
<th>Sram</th>
<th>Flash</th>
<th>Crypto Acc.</th>
<th>Energy Source</th>
<th>Public Key Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belkin</td>
<td>WeMo Switch</td>
<td>Ralink RT5350F (MIPS)</td>
<td>360 Hz</td>
<td>32MB</td>
<td>16MB</td>
<td>No</td>
<td>Wall socket</td>
<td>Yes</td>
</tr>
<tr>
<td>Samsung</td>
<td>Smarthings Hub</td>
<td>PIC32MX695F-512H</td>
<td>80MHz</td>
<td>128KB</td>
<td>512K</td>
<td>No</td>
<td>Wall socket/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Nest</td>
<td>Thermostat</td>
<td>TI AM3703CUS Sitara (ARM Cortex A8)</td>
<td>1GHz</td>
<td>512Mb</td>
<td>2Gb</td>
<td>Yes</td>
<td>Wall socket</td>
<td>Yes</td>
</tr>
<tr>
<td>LIFX</td>
<td>Color 1000</td>
<td>Kinetics K22 (ARM Cortex-M4)</td>
<td>120MHz</td>
<td>128KB</td>
<td>512K</td>
<td>No</td>
<td>Wall socket</td>
<td>No</td>
</tr>
<tr>
<td>Amazon</td>
<td>Echo</td>
<td>TI DM3725CUS100 (ARM Cortex A8)</td>
<td>1GHz</td>
<td>256MB</td>
<td>4GB</td>
<td>Yes</td>
<td>Wall socket</td>
<td>Yes</td>
</tr>
<tr>
<td>Philips</td>
<td>Hue Lights</td>
<td>ST Mic. STM32F217VE (ARM Cortex-M3)</td>
<td>120MHz</td>
<td>128KB</td>
<td>1MB</td>
<td>Yes</td>
<td>Wall socket</td>
<td>Yes</td>
</tr>
<tr>
<td>Philips</td>
<td>Hue Lights (Bulb)</td>
<td>STM32F100RB6 (ARM Cortex-M3)</td>
<td>24MHz</td>
<td>8KB</td>
<td>128KB</td>
<td>No</td>
<td>Wall socket</td>
<td>No</td>
</tr>
<tr>
<td>Nest</td>
<td>Smoke/Carbon Alarm</td>
<td>Freescale SCK60D512VLL10 custom Kinetics K60</td>
<td>100MHz & 48MHz</td>
<td>128KB</td>
<td>512K</td>
<td>Yes</td>
<td>Wall socket/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Pebble</td>
<td>Time</td>
<td>ST Micro STM32F4392G (ARM Cortex M4)</td>
<td>180MHz</td>
<td>256KB</td>
<td>2MB</td>
<td>Yes</td>
<td>Battery</td>
<td>No</td>
</tr>
<tr>
<td>Adafruit</td>
<td>Feather MO Bluefruit LE</td>
<td>TSAMD21G18 ARM Cortex M0</td>
<td>48MHz</td>
<td>32KB</td>
<td>256KB</td>
<td>No</td>
<td>Battery</td>
<td>No</td>
</tr>
<tr>
<td>BeagleBone</td>
<td>Green Wireless (other models)</td>
<td>AM335x 1GHz ARM Cortex-A8</td>
<td>1GHz</td>
<td>512MB</td>
<td>4GB eMMC</td>
<td>Yes</td>
<td>External/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Raspberry Pi</td>
<td>Zero</td>
<td>ARM1176JFSP Armv6 core</td>
<td>1GHz</td>
<td>512MB</td>
<td>MicroSD</td>
<td>Yes</td>
<td>External/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Raspberry Pi</td>
<td>Two (2)</td>
<td>ARM Cortex-A7</td>
<td>900MHz</td>
<td>1 GB</td>
<td>MicroSD</td>
<td>Yes</td>
<td>External/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Raspberry Pi</td>
<td>Three (3)</td>
<td>ARM Cortex-A53</td>
<td>1.2GHz</td>
<td>512MB</td>
<td>MicroSD</td>
<td>Yes</td>
<td>External/Battery</td>
<td>Yes</td>
</tr>
<tr>
<td>Arduino</td>
<td>MKR1000 (other models)</td>
<td>Atmel</td>
<td>SMART SAMD21 Cortex-M0+</td>
<td>32KHz & 48MHz</td>
<td>32KB</td>
<td>256KB</td>
<td>No</td>
<td>Battery</td>
</tr>
<tr>
<td>Fitbit</td>
<td>One</td>
<td>ST Mic. 32L151CG Ultra Low P. ARM Cortex M3</td>
<td>32 MHz</td>
<td>16KB</td>
<td>128KB</td>
<td>No</td>
<td>Battery</td>
<td>No</td>
</tr>
<tr>
<td>Fitbit</td>
<td>Surge</td>
<td>Silicon Labs EFM32 (ARM Cortex-M3)</td>
<td>48 MHz</td>
<td>128KB</td>
<td>1MB</td>
<td>Yes</td>
<td>Battery</td>
<td>No</td>
</tr>
</tbody>
</table>
Talk Outline

• Overview of IoT

• Security Failures in IoT: Motivating Use Cases

• Why direct use of Blockchain is not practical for IoT

• **Challenge**: Design practical Blockchain-based protocols for IoT

• Conclusions, Discussion & Challenges
Can we use Blockchain-inspired protocols?

Strengths

- Trust among untrusted Parties
- Distributed resilience and control
- Fully Decentralized network
- Primarily Open source
- Security and modern cryptography
- Controlled & Open Participation
- Smart Contracts
- Dynamic and Fluid Operation
What do we really need?

IoT System Operational Requirements (Empirical)

- Dynamic but verifiable group membership
- Authentication & Data integrity
- Secure against single-node (or small sub-set of nodes) key leakage
- Lightweight operations in terms of resources
- Encryption is a plus but not firm requirement
- Capable of handling sensor “sleep/power-off” periods
- Handle resource diversity and data of sensors and aggregators
Blockchain Primer

Public Distributed Verifiable Cryptographic Leger

- Public
 - All participants gain access to “read”
- Distributed
 - Peer-to-Peer Data Communication, Fully Decentralized
- Cryptographic
 - Digitally signed transactions, proof-of-work limits rate of input
- Ledger
 - Verifiable Transactional Database
Blockchain Primer
Talk Outline

• Overview of IoT

• Security Failures in IoT: Motivating Use Cases

• Why direct use of Blockchain is not practical for IoT

 • Challenge: Design practical Blockchain-based protocols for IoT

• Conclusions, Discussion & Challenges
Is Blockchain Directly Applicable in IoT?

Desirable Properties
• Distributed protocol with verifiable transaction history
• Dynamic membership multi-party signatures

Undesirable Properties
• Requires proof of “work”
• Requires PKI
• Size of the Ledger an issue for “small” devices
• Anonymous (unverifiable) Join/Leave operations
What can we do?

Eliminate undesirable properties

• Requires proof of “work”
 Requires proof of earlier participation using history

• Requires PKI
 Hash-based signatures (or other Merkle-tree schemes)

• Size of the Ledger an issue for “small” devices
 Prune and Compress Ledger. Maintain only device-relevant transaction ledger when device is too resource constrained

• Anonymous (unverifiable) Join/Leave operations
 Group signatures using pre-shared group Key(s)
Hash-Chains

One-time hash passwords (Lamport 1981):

- Client generates iteratively a list of hash values (in reverse order of index).

\[
\begin{align*}
z_\ell & \leftarrow \{0, 1\}^n \\
z_i & \leftarrow h(z_{i+1}) \text{ for } i \in \{\ell - 1, \ell - 2, \ldots, 0\}
\end{align*}
\]

- \(z_0 = h(z_1) = h(h(z_2)) = \ldots \) is the “public key”
- Keys are revealed in opposite order, starting from \(z_1 \)
- Verification of \(z_i \): starting from \(z_i \) verify, if \(z_0 \) is indeed \(i \)-th hash
- Keys can be used only once!
Hash-Chain: PreImage Path

Lamport's one-time-password scheme has either

- $O(\ell)$ storage (whole chain retained) or
- $O(\ell)$ preimage generation time (only z_ℓ retained).

Both extremes are not exactly efficient.

Naive optimization: mark few elements with "pebbles", retain values and use as starting points. If N pebbles are evenly distributed then the worst case is $O(\ell/N)$ hash calculations per key.

Jakobsson (2002): traversal algorithm which amortizes $h()$ calculations. $O(\log \ell)$ memory and $O(\log \ell)$ hashing steps to output a key (preimage).

Pebbles are placed at positions 2^j, $j = 1..[\log \ell]$; preimages are extracted from left. If a pebble is reached it jumps next to another, and leftover calculations at each step are used to move it gradually into position between neighbors.
But what about in practice?

For sensor nodes and aggregators:

Using Hash chain of size: $2^{32} = 4,294,967,296$ passwords
• More than 68 years to run out for one (1) transaction per second
• Each transaction having a distinct key

If we select SHA256 as the hash function of choice:
Memory Requirements: $2 \times \log_2(n) + 256 = 320$ bits
For 32 locations + seed totaling $1,320$ bytes of storage or 1.3KB
Typical Sensor Networks
Blockchain-based Protocol for IoT?

We suggest a Blockchain-based protocol that uses the following blocks:

\[x_i = H(Data \| K_G \| H(z_i)^n), H(z_i)^{n-1} \]

\(H = Hash, K_G = group\ Key, z_i = sensor\ i\ "public\ key" \)
We suggest a Blockchain-based protocol that uses the following blocks:
Does the Scheme Meet the Requirements?

• IoT System Operational Requirements (Empirical)
 • Dynamic but verifiable group membership
 • Secure against single-node (or small sub-set of nodes) key leakage
 • **Only Aggregators** can add nodes by issuing a group Key
 • Can be done using Symmetric Encryption or a Hash Chain
 • Node is verified both by **group key AND** by **participation history**
 • To add a node, an adversary will have to:
 a) Compromise the group key
 b) Issue an “add node” transaction
 c) Add a sensor node
 • Shape of the tree shows “additions” and “removals” of nodes over time
Does the Scheme Meet the Requirements?

• IoT System Operational Requirements (Empirical)
 • Authentication & Transaction integrity
 • Nodes and transactions are authenticated using the group key and the node Lamport signatures
 • A node uses his Lamport public key to validate inserted DATA, transmits DATA to aggregator(s)
 • Lightweight operations in terms of resources
 • Operations can be lightweight for sensors. Aggregators have more resources
 • Encryption is a plus but not firm requirement
 • No need for encryption
Does the Scheme Meet the Requirements?

- **IoT System Operational Requirements (Empirical)**
 - Capable of handling sensor “sleep/power-off” periods
 - Nodes can re-authenticate using their knowledge of historical transactions proving their membership specific historical transactions using **predecessors** for Lamport Signatures
 - Handle resource diversity and data of sensors and aggregators
 - Different nodes store different portions of the ledger
 - Aggregators fully, others partial
Talk Outline

• Overview of IoT

• Security Failures in IoT: Motivating Use Cases

• Why direct use of Blockchain is not practical for IoT

• **Challenge**: Design practical Blockchain-based protocols for IoT

• Conclusions, Discussion & Challenges
Conclusions

• IoT Scale, Vendors, Technologies increase exponentially
• IoT Devices will always have diverse capabilities & Resources
• Use of Cryptography is done without clear understanding of the implications
• No Current Standards for Lightweight cryptography

• Blockchain inspired protocols combined with new Cryptographic primitives might be the path forward
Discussion

Now that we build a Blockchain for IoT what is next?

• Secure Software Updates and Transactional Cross-IoT
• Audit & Monitor Devices from different Vendors
• Enable Application Markets for IoT
• Share information using Blockchain Smart Contracts
• Verified Time for IoT
Are we Done? Challenges

Cost of Deployment & Energy is an open problem for IoT devices, Consumer products

Scalability & Interoperability not initial design tenets Communication Overhead

Novel Blockchain-inspired designs that adhere to requirements of the use cases

Lack of Standards and maturity of technologies an impediment for adoption

Bi-directionality of communications
Scaling latency
No msec or nsec transactions
Time Verification

Privacy & Security is not just immutability
What about data provenance and removal?
Blockchain is forever

Competing technologies are causing confusion and do not offer complete solutions for user needs

Blockchain Technology
Thank you, Questions?
Operational Transactions

\[
T(x_i) = \text{Operation} \ || I_A \ || x_n^{k_0} \ || h\left(\text{Data} \ || K_G \ || h^k(x_i^{k_0})\right) \ || h^{k-1}(x_i^{k_0}) || k_0
\]

where \(\text{Operation} = \{\text{ADD or REMOVE}\}\) and \(x_n^{k_0}\) is the node id (here node \(n\)) the operation is applied to. \(I_A \in \{0, 1\}\) denotes if the added or removed node is an aggregator. We assume that node \(x_i\) broadcasted the transaction \(T(x_i)\). In case of ADD operation \(x_n^{k_0}\) denotes the first key of the newly added node \(n\).