Learning from the Past
Going into the Future

Dr. Damir Novosel
IEEE PES President Elect
President, Quanta Technology

November 16, 2015
Outline

- IEEE PES Benefits
- Industry Trends
- IEEE Quadrennial Energy Review
- Grid of The Future
Going Forward…

• Increase Global Participation
 o Increasing the number of chapters worldwide
 o Publicize technical committee output (standards, tutorials, etc.)
 o Involve more international participants in standards and other committee work through electronic media
 o Hold more technical committee meetings abroad - local meetings

• Increase Industry Participation - Transition members to volunteers
• Promote Products and Services

Membership Exceeded 32,000
IEEE PES Membership Depth and Breadth

Benefiting from the strength of our diversity and wide variety of technical backgrounds:

- Utilities, Municipalities and RTOs/ISOs
- Academics and Research
- Equipment Manufacturers and System Suppliers
- Government and Regulatory
- Testing Labs, Consulting and more

Our strength is in attracting wide audiences by creating and implementing new technical ideas and applying best practices through output and initiatives
Benefits of IEEE PES Participation

- Learning new skills and technologies and gain information and insight from others through conferences, committee participation, webinars, etc.
 - Cost-effective workforce training, e.g. through attending tutorials
 - Accelerating identification of best practices world-wide for process improvements
- Drive and understand standards and key technical issues: Enhance and protect current and future investments, shape industry practices, gain a voice at the technology table, and influence new developments
 - PES members comprise 10% of overall worldwide IEEE membership but publish app. 50% of all IEEE Standards
- Enabling participants to build a network of professional colleagues for fast access, advice, and problem-solving
- Gain and enhance mentoring, management, and speaking skills
Conferences and Meetings

- Financially Sponsored Conferences around the world
- Partnering for Technically co-sponsored conferences
- International and Regional Scopes
- Emerging Topics

Publications

- IEEE Power & Energy Magazine
- IEEE e-News Update
- IEEE Power & Energy Society (PES) Newsletter
Education

- **Resources**
 - Tutorials
 - E-Learning Module
 - Plain Talk Courses for Non-Engineers
 - Videos

- **Awards**
 - Increase Senior Member, Fellows, Awards, especially industry and Regions 8, 9 & 10
 - Students
 - Programs – Expanding to Regions 8, 9 & 10
 - Careers and Scholarship Plus

New Initiatives and Outreach

- Community Solutions Initiative - Low cost, local efforts for electrification in developing countries
- http://communitysolutionsinitiative.org/
19 Technical and 4 Coordinating Committees

- Electric Machinery
- Energy Development & Power Generation
- Insulated Conductors
- Nuclear Power Engineering
- Power System Analysis, Computing & Economics
- Power System Communications
- Power System Dynamic Performance
- Power System Instrumentation & Measurements
- Power System Operations
- Power System Planning & Implementation
- Power System Relaying
- Stationary Battery
- Substations Committee
- Surge Protective Devices
- Switchgear
- Transformers
- Transmission & Distribution

Coordinating Committees
- Emerging Technologies
- Intelligent Grid
- Marine Systems
- Wind & Solar Power

Standards Coordination
A New Industry: Electric Power & Light

- Thomas Edison and his incandescent light patent
- Edison's first commercial plant, Pearl St., NY 1882
- Samuel Insull built the reliable “power pool”, reducing production costs, rates, and increased efficiency
- Nikola Tesla, inventor of the induction motor and a comprehensive system for polyphase AC power

- Edison opened his first electric power plant in New York in 1882. Was it a microgrid?
- Within a decade, electric power had spread to every corner of the globe, with many new applications!
- Why was grid interconnected throughout the years?
IEEE = AIEE + IRE

AIEE (American Institute of Electrical Engineers), established 1884
AIEE elected the following slate of officers on May 13, 1884:
- President: Norvin Green
- Six Vice Presidents: Alexander Graham Bell, Charles A. Gross, Thomas A. Edison, George A. Hamilton, Charles H. Haskins, and Frank L. Pope

IRE (Institute of Radio Engineers), established 1912

IEEE badge, 1893
First AIEE standard, 1893
Committee report, 1899
Innovation: Electric Vehicles

- 1891: First successful electric car in the US
- 1893: Different makes exhibited in Chicago
- 1904: ~1/3 of the cars were electrical (photo source: Smithsonian)

Tesla Motors:
- Leveraged proven technology
- Large financial investments
- Extensive testing
- Realistic expectations
- Sells directly to consumers

Fisker Automotive:
- Relied on unproven technology & new suppliers
- Limited resources
- Skimped on testing
- Unrealistic pre-order expectations
- Filed for bankruptcy
Engineering for Success

- Highest safety rating
- Zero to 60 mph in 3.2 seconds
- Estimated 270-mile range
- All-Wheel Drive Dual Motor and Autopilot
Achieving Grid Resilience

Large investment required - uniquely critical infrastructure providing an "enabling function"

- Asset Management: Aging Infrastructure, Reliability, Hardening, Security (Physical & Cyber)
- Distributed Resources, Microgrids, Electric Vehicles, Storage
- Demand Side Mgmt.
- Distribution Services, Efficiency, and Markets

Complex grid structures require "Smart Grid" solutions

U.S. Outage Cost = $125 Billion/Year (DOE)
Grid of the Future: Business Questions

- How to value the use of the T&D system in the presence of renewables?
- Is it cost-effective and appropriate to treat the grid as a “free storage” with no fixed charge for this service?
- What is the future viable utility Business Model? Will there be stranded investment?
- What are the benefits and pre-conditions to implementing DSO?

Source: EIA.GOV

2012 to 2040 > Typical Home Down 4% (to 11.6 MWh/yr)
2012 to 2040 > Lighting Down 65%

Source: Prof. Simon Bartlett
How would the electric system be designed today using existing technology and knowledge, assuming no existing infrastructure in place?

How best to deliver remote renewable energy sources to load centers? Is it realistic to build cities close to renewable energy resources?

Is it more reliable and cost efficient to independently manage local generation (e.g. PV), or to manage these assets in an integrated way?

Is it more reliable and cost efficient to integrate distributed resources and microgrids?

Grid Transformation Drivers

- Smart Grid Investments
- Microgrids, "behind the meter" distributed energy resources and Electrical Vehicles require a robust, hybrid T&D grid – Grid connection required for reliability and market reach
- Smart Cities - How will electrical system help improve the livability, workability and sustainability
Smart Grid Investments

• Transmission made smarter with enhanced monitoring, protection & control
 — Synchronized Phasor Measurements
 — Wide-area protection coordination
• Distribution transformed with automation & feeder optimization
 — Vol-VAR control
 — Catching a conductor before it hits the ground
• Demand response w/smart meters
• Utility grade battery storage
Innovative Technologies

LG Shows Smart Appliances at CES

January 4, 2013
By Steven Castle

Smart Grid Control Center

Smart Grid Infrastructure

Credit: Energy Central
Next Generation Monitoring and Control
Highly Instrumented Advanced Sensors & Computing

1,700 networked PMUs, funded by SGIG grants and private sector funds

Precise grid measurements (within 1 ms) using GPS signals - Phasor Measurement Units (PMUs)

Dynamic wide-area network view at high speed (e.g., 60 to 120 observations/s) for better indication of grid stress

Phasor Measurement Units in North American Power Grid

Source: North American Synchro-Phasor Initiative (NASPI)
International Synchrophasor Deployment

- China has installed PMUs in more than a thousand 500/230 kV substations and number continues to grow
- India is installing 1,732 PMUs
- Latin America
 - Colombia – Deployed applications for improved grid observability and reliability
 - Ecuador – Deployed System Integrity Protection Scheme using PMUs
 - Brazil - ONS is procuring the system
- Europe and Australialia have started installations

Source: Power system operation India – "Synchrophasors in India" Dec 2013
Pacific Gas & Electric Applications

- Situational Awareness, Visualization and Alarming (angles and voltages; overloads and oscillations)
- Voltage Stability Management
- Enhanced Energy Management Systems
 - Adding synchrophasor measurements to existing SE
 - Tracking dynamic changes and contingency analysis
- System Restoration
- Post-Disturbance Event Analysis, including Fault Location
- Operator and Engineering Training, Dispatch Training Simulator

Weak elements (i.e. prone to voltage instability)

MW Transfer Margins

Remedial Actions
Affordable, clean, and secure energy and energy services are essential for improving U.S. economic productivity, enhancing our quality of life, protecting our environment, and ensuring our Nation's security.

Achieving these goals requires a comprehensive and integrated energy strategy resulting from interagency dialogue and active engagement of external stakeholders.

To help the Federal Government better meet this responsibility, I am directing the undertaking of a Quadrennial Energy Review.

President Barack Obama
January 9, 2014

• Integrated view of short-, intermediate- , long-term objectives for Federal energy policy;
• Outline of legislative proposals to Congress;
• Executive actions (programmatic, regulatory, fiscal, etc.) across multiple agencies;
• Resource requirements for RD&D and incentive programs; and
• Strong analytical base for decision-making.
• First year focus on TS&D infrastructure including: electricity transmission and distribution systems, liquid and gas pipelines, export infrastructure; interdependencies; climate and environment.

Source: DOE
U.S. DOE has requested IEEE to provide insights on a specific set of priority issues

- The implications and importance of aging infrastructure and the options for addressing these challenges, including asset management
- Effects of renewable intermittency on the grid and the role of storage
- Business case issues related to microgrids and distributed generation (DG), including rooftop photovoltaics
- The technical implications for the grid of electric vehicle (EV) integration
- Recommendations for metrics for Smart Grid issues, determine the importance and necessity of protocols
- Skilled workforce issues

Started in May 2014 and submitted report on September 5th 2014 - http://www.ieee-pes.org/qer
Many projects competing for more funding than spending plan can provide

Methodologies to compare and optimize the competing project priorities

Strategies for Smart Grid assets

Asset Management: Predictability of Cost & Reliability

Business Goals
- System Reliability & Capability
- Capital/O&M Budgets
- Aging Infrastructure
- Grid Hardening

Holistic Asset Management

Average systems 40 to 60 years old - Maintenance needs to double over next 10-20 y
Renewable Intermittency and Storage

- **Grid Level**: Uncertainty of renewable sources can be tolerated at penetration levels around 30% (system studies & real world experience)
 - Traditional power system planning and operations need to be updated, incl. cooperation among balancing areas
 - Energy storage, while a useful and flexible system tool, is not essential as other, often more cost-effective options are available such as fast responding generation and demand response

- **Distribution**: High penetration of renewable DG creates challenges; solutions include
 - Low-cost distributed storage systems
 - Advanced power electronics technologies
 - Real-time monitoring, control and automation
Microgrid Benefits

• Capacity, Reliability and Power Quality
 – A low-cost augmentation/alternative to a utility system
 – Controlling power quality and reliability locally
 – Outage management for critical, premium, remote customers (e.g. weather related events)

• Energy Efficiency and Asset Management – lower OPEX:
 – Reduced equipment utilization and losses as generation closer to the load
 – Peak load shaving – in conjunction with market pricing

• Sustainability – Optimal dispatch of renewables and high community involvement
 – Emissions reduction and green marketing
 – Demand-side management

• Cost Savings – Portfolio of resources managed locally, but optimized on the system level
Optimized Hybrid Microgrids

- Utility grid and microgrids must work synergistically to fulfill all the needs - serving all the load all the time
- Assessing costs should include efficiency, reliability, safety, optimizing life-cycle costs, and system resilience
- New tools and Standards, e.g. IEEE 1547 Series, Microgrid Controller
 - Frequency regulation
 - Voltage control
Microgrid Protection Aspects

- Grid connected DG protection issues
- Island detection (disconnected from main grid) - Transition issue
- Protection during islanding
 - Not enough short circuit current
 - Re-coordination (change in zones)
- New schemes:
 - Communication based
 - Negative Seq. method
 - PMU based

DG inside island has to detect opening of a recloser to change control mode

Diagram:

- DG
- Recloser A
- Recloser B (Normally Open)
- Adjacent Feeder
- Islanded Area
- 13.2 kV

DG inside island must trip before a fast reclose is attempted by the utility.
Integrating PEV

About 330,000 PEVs on the road

- Generation and transmission systems can handle millions of plug-in electric vehicles
- Good understanding of technical issues on the distribution system
 - Potential overloads of distribution transformers and circuits
 - Changes in equipment cooling patterns
 - Inability to accommodate high-power charging in older neighborhoods with legacy distribution infrastructure

Adapted from “Survey Says: Over 40% of American Drivers Could Use an Electric Vehicle,” Union of Concerned Scientists,
Recommendations

• Charging infrastructure

• Grid interface standards: sizing/implementation for grid equipment, remote control system technology, communications, use of batteries during disasters

• Batteries and power electronics

• Grid/load modeling and forecasting

• Integrated demand response and transactive energy

How long does it take to charge the battery for 32 miles?

- Level-1 in 8 hours
- Level-2 in 2 hours

$300 cord comes with all EVs and outlets exist

$2,000 installed
Skilled Workforce

- Perfect Storm: Aging Workforce + Aging Assets = Reliability Decline
- Requirement: Programs to attract, train and develop engineers, linemen, station electricians, protection/control resources, and other technical resources
- Workforce implications and educational or training needs should be considered as integral factors of research and policy initiatives

The U.S. utility workforce is getting old ...

...limiting the labor pool for utilities

- Utility workforce not adequately replenished
- Recession has hurt development effort
- Long training lead times
- Limited utility labor supply

The U.S. utility workforce is getting old ...

% of workers by age group, 2011

<table>
<thead>
<tr>
<th>Age Group</th>
<th>U.S. Average</th>
<th>Electric Power Generation and T&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>25-34</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>35-44</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>45-54</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>55-64</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>65+</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

~50% of workers will be eligible for retirement in the next 5-10 years
Critical Needs

• Software/Models
 – Tools & models for integrated systems analysis & operation

• Standards
 – Big data handling, stream computing, and analytics
 – Interconnection

• Policy
 – Devices that operate across institutional, regulatory, and information boundaries

Data Analytics: Forensics to Identify Sequence of Events
Example, PG&E: May 30th, 2013
Preparing for the Grid of the Future

- Developing business and technology roadmaps
- Addressing and preparing for various scenarios
- Deploying pilot projects to test and prepare for changes
- Developing and applying industry standards
- Developing a skilled workforce

Speed and success will depend on clear and balanced regulatory policies to promote safe, cost-effective, and reliable deployment of technologies

Source: ComEd
Future Grid Roadmap

Demand For Electricity Will Increase
 ✓ Population growth, electric vehicles, use of renewables, etc.

Fuel Transformation Will Occur
 ✓ Dash to natural gas, renewable surge, plant retirements

G, T & D Investment Will Increase
 ✓ Infrastructure Investment – U.S. Electric utility industry will require up to $2 trillion by 2030, including generation (EEI)

Grid Will Be Made Smarter, Reliable, Resilient, Secure
 ✓ Advancements in technology and skilled workforce

Customers Will See Value Beyond Commodity
 ✓ Increased choices, digital age reliability, comfort value

Societal and Economic Goals Met
 ✓ Sustainability and support of growing economy