Developments in the Line Fault Location Technology for HVDC Systems

Kasun Nanayakkara Athula Rajapakse

A collaborative research by The University of Manitoba and Manitoba HVDC Research Centre

Outline

- Introduction
- Fault generated travelling wave detection
- Fault location in VSC HVDC systems
- Fault location in multi-segment HVDC systems
- Fault location in star connected multi-terminal HVDC systems
- Conclusions

Introduction

Original Picture retrieved from http://en.wikipedia.org/wiki/File:HVDC Crossover North-Dakota.jpg © 2010 by Wtshymanski

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by/3.0/

- High Voltage Direct Current (HVDC) technology has established as an economical solution to
 - Transmit bulk electrical power over long distances
 - Interconnect asynchronous systems
 - Transmit power through cables over long distances
- Quick location of permanent faults on HVDC transmission lines is very important
 - Involves large amount of power
 - Need quick repairs to minimize outage costs
 - Fault location technology
 - Based on travelling waves generated by the fault

Travelling wave based fault location

Travelling wave based fault location methods

Single terminal method

$$L_1 = \frac{1}{2}(t_{r2} - t_{r1}) \times v$$

Two terminal method

$$L_1 = \frac{1}{2} [L + (t_{f1} - t_{r1}) \times v]$$

The two-terminal method:

- More reliable since only the initial surges are used
- Needs synchronized measurements

Fault location in HVDC transmission lines

- Fault location: $L_1 = \frac{1}{2} [L + (t_{f1} t_{r1}) \times v]$
- Accuracy depends largely on accuracy of the surge arrival time measurement
 - In overhead lines, waves travel close to speed of light (299 792 458 m/s)
 - 1μs error in Δt could cause up to 300 m error in distance
- Potential signals for detecting the arrival of travelling waves
 - Terminal voltage of DC line
 - Current through the surge capacitor
 - DC line current ?

Fault location in HVDC transmission lines

- Manitoba HVDC Research Centre is a commercial HVDC Line Fault Locator manufacture
 - Expects a growth in the demand for fault locators
 - Foresees challenges due to emerging changes in the nature of the HVDC transmission systems
- Major challenges
 - Long transmission lines (> 1000 km) and cables (> 200 km)
 - VSC based HVDC systems
 - HVDC systems with multiple transmission segments
 - Multi-Terminal HVDC (MTHVDC) schemes and DC grids
- Initiated a collaborative research project with MHI and University of Manitoba

Wave-front detection in existing LFL

- Detection signal:
 - Surge capacitor current
- Analog detector
 - LED/optical sensor
 - GPS based time stamping

New proposal for wave-front detection

Capturing waveforms

- Possibility of post processing to obtain more accurate surge arrival times
- Wavelet transform

Rogowski coil as transducer?

- Zero output at steady state ideal
- Bandwidth limitations, noise levels, and output voltage levels are concerns
- DAQ hardware requirements?
 - Sampling frequency
 - Bit resolution
 - Voltage range

Experimental wave-front capturing unit

- Test units were installed at Dorsey and Radisson converter stations
- Data were recorded between 23rd of July 2012 and 4th of September 2012

Rogowski coil

Captured waveforms

2MHz sampling frequency

- $\Delta t = 0.5 \mu s$
- GPS clock accuracy ± 150ns

Event 1- 23/07/2012, 22:56:36:

- Temp flashover possibly caused by smoke
- No lightning anywhere near
- There was a fire about 11 miles away from the estimated location

Existing	Rog. coil	Δt (nano Sec)		
826.25	826.16	646.0057		

Possible fault in pole 3

Faults on bipole-2 can be detected through the measurements on bipole-1 using induce transients

Comparison of results

 Calculated values in km from Radisson using time differences and propagation velocity of 299792.458 km/s

					Δt			Fault location		
Evt					Existing	Wavelet	Difference in		, ,	Difference in
No	Date	Hr	Min	Sec	LFL	LFL	Δt (nS)	Existing LFL	Wavelet LFL	fault loc (m)
Ξ	26/07/2012	13	29	18	0.000806	0.000807	-692.9884999	326.2836498	326.1797734	-103.8763629
	26/07/2012	14	10	17	0.001187	0.001188	-1134.0194	269.1581969	268.9882117	-169.9852317
5	26/07/2012	14	56	11	0.000924	0.000926	-1593.0237	308.5359363	308.297148	-238.7882453
ϵ	26/07/2012	15	28	21	0.001181	0.001181	-366.9691	270.1025432	270.0475359	-55.00728425

- Rogowski coil measurements of the surge capacitor current can be successfully used for determining surge arrival times
 - Post-processing of waveforms using wavelet transform can improve the accuracy under difficult conditions

Fault location in VSC HVDC systems

- Fault location in VSC HVDC schemes with long cable connections (> 100 km) is challenging
 - Large DC capacitance at the converter terminal
 - Absence of large smoothing inductor
 - Need to understand limitations and develop solutions

Measurements in the presence of dI/dt limiting reactor

Measurements in the presence of dI/dt limiting reactor

Fault location in multi-segment HVDC lines

- HVDC transmission systems are often used to transport electricity across water bodies
- Fault location in HVDC systems with multi-segments is generally achieved with the help of repeater stations

Novel fault location algorithm

- Use only the measurements at the converter terminals.
 - Eliminates duplicate fault location hardware for each line section
 - Substantial economics benefits

Novel fault location algorithm

Case of a fault in segment 1 (F₁)

$$T_1$$
 surge arrival time= $t_{1-F1} = \frac{x_{F1}}{v_1}$

$$T_2$$
 surge arrival time= $t_{2-F1} = \left(\frac{L_1 - x_{F1}}{v_1}\right) + \frac{L_2}{v_2} + \frac{L_3}{v_3}$

Surge arrival time difference =
$$\Delta t_{12-F1} = t_{1-F1} - t_{2-F1} = \frac{2 \cdot x_{F1}}{v_1} - \frac{L_1}{v_1} - \frac{L_2}{v_2} - \frac{L_3}{v_3}$$

Distance to fault from T1 =
$$x_{F1} = \left(\Delta t_{12-F1} + \frac{L_1}{v_1} + \frac{L_2}{v_2} + \frac{L_3}{v_3}\right) \times \frac{v_1}{2}$$

Novel fault location algorithm

Identification of the faulty segment

Simulated case study to validate the method

- Test network was built in PSCAD/EMTDC and the fault location algorithm was implemented in MATLAB.
- Wavelet coefficients of the surge capacitor current/voltage was used to determine the surge arrival times.

Sample of simulation results

[mea	Actual fault location (km) sured from the rectifier end]	5	26	49	70	91	167
ated values using equations 1,2 and 3	x _{F1} (Valid Range: 0 to 27)	5.07	25.97	71.26	113.57	135.51	211.22
	x _{F2} (Valid Range: 0 to 44)	-10.88	-0.51	21.95	42.94	53.82	91.38
Calculated equ 1,2	x _{F3} (Valid Range: 0 to 97)	-111.14	-90.15	-44.65	-2.14	19.89	95.94
Pro	edicted fault location (km)	(x _{F1}) 5.07	(x _{F1}) 25.97	(27+x _{F2}) 48.95	(27+x _{F2}) 69.94	(27+44+x _{F3}) 90.89	(27+44+x _{F3}) 166.94

Multi-terminal HVDC systems

- MTHVDC systems have more than two converter stations connected to a common HVDC transmission system
 - Interconnection of off-shore wind farms
 - Underground urban sub-transmission systems
 - Shipboard power supplies
 - Interconnection of on shore renewable generation systems

(a) The Lillgrund offshore wind farm in Sweden

Figures (a) retrieved from http://en.wikipedia.org/wiki/Lillgrund Wind Farm. Copyright 2007 by Mariusz Paździora

Figures (b) retrieved from http://en.wikipedia.org/wiki/Waldpolenz Solar Park. Copyright 2008 by JUWI Group.

Both figures under the Creative Commons Attribution-Share Alike 3.0 Unported license.

(b) Waldpolenz Solar Park in Waldpolenz, Germany

Fault location in MTHVDC systems

- Possible different topologies
 - point to point
 - Ring
 - Star
 - Mixed

New fault location algorithm star networks

- Use only the measurements at the converter terminals.
- Determine faulted line segment
 - Assume fault is on segment i
 - Calculate N-1 fault location estimations considering different pairs of converter stations
 - If the estimations are consistent, the fault is on segment i
 - Otherwise go to next segment; repeat the procedure until faulted line segment is found

- Determine exact location
 - Average of the N-1 estimations for the faulted line segment

Conclusions

- Through this collaborative research project, we developed solutions for a number of challenging HVDC fault location problems
 - 1. New fault generated surge arrival time measurement scheme
 - Wavelet based post-processing for more accurate surge arrival time determination
 - New algorithm for fault location in multi-segment HVDC schemes using only terminal measurements
 - 4. Surge detection in VSC based HVDC schemes
 - New algorithm for fault location in star connected multi-terminal HVDC schemes

Acknowledgements

- Manitoba HVDC Research Centre staff
 - Randy W. Wachal
 - Jean-Sebastien Stoezel
 - Warren Erickson
- Manitoba Hydro Technical Staff at Dorsey and Radisson stations
- Financial support
 - Research grant from Manitoba Hydro
 - Collaborative R&D grant from NSERC
 - UoM Graduate Fellowship from University of Manitoba
 - Manitoba Graduate Fellowship from the Government of Manitoba

Thank you