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FLEET MANAGEMENT SYSTEM (FMS)
• Considerable interest in FMS for autonomous vehicles (AVs) in both 
academia and industry in recent times. 

• R&D in progress related to FMS:
• CityMobil2: EU project since 2012 by 45 partners companies/institutes

• Japan plans to build robot taxis for 2020 Olympics.

• Similar initiatives in Singapore

• …

• Technological needs

• Need for integrated optimization platform for FMS that takes various aspects into 
account, e.g., behavior of AVs, demand profile, traffic and weather conditions

• Need for integrated simulation platform for FMS to test various what-if scenarios and 
real-life conditions, various designs of AVs, etc.



FMS: DEFINITION AND APPLICATIONS
• Definition: FMS comprises the optimal route planning, supervision and control of the fleet
operations based on the available resources.

• A special focus is on the integration of organizational processes with modern information systems
such as GPS, mobile phone apps using internet, etc.

• Fields Of Application:
• Route Planning

• Vehicle tracking

• Fuel and speed management

• Pick-up and delivery

• …



VEHICLE ROUTING PROBLEM (VRP)
• Objective: To deliver customers/goods on minimum-
cost vehicle routes originating and terminating at a
depot.

• How? – By designing vehicle routes to serve the
geographically dispersed customers/goods.

• VRP is one of the most challenging combinatorial
optimization problems.

• Types of VRP:
• VRP with time-windows
• Capacitated VRP
• Multi-depot VRP
• VRP with backhauls, etc.
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DIAL-A-RIDE PROBLEM (DARP): A VARIANT OF VRP

• Objective: To design vehicle routes and schedules for n
users who specify pickup and delivery requests.

• How? - By planning a set of m minimum cost vehicle
routes to serve maximum possible requests, under a set
of constraints.

• A generalization of Pickup and Delivery Vehicle Routing
Problem (PDVRP) and the Vehicle Routing Problem with
Time Windows (VRPTW).

• Example: Mobility on demand.

• Trade-off: User convenience and operational costs.
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Presenter
Presentation Notes
Currently, I have explored three algorithms.
They are tabu search, ant colony optimization and simulated annealing. 
Before I compare these algorithms, I would like to briefly explain the three algorithms. 





METHODS TO SOLVE DARP
Heuristic and Meta-heuristics

• Tabu search
• Ant colony optimisation
• Simulated annealing
• Variable neighbourhood search
• Genetic algorithm, etc.

Exact 

• Dynamic Programming
• Branch & Cut and Price
• Column generation
• Bender’s Decomposition
• L-shaped algorithm, etc.

OPTIMISATION METHOD PROS CONS

EXACT Guaranteed convergence 
to global optimum.

Computationally intensive.

HEURISTICS Computationally efficient. Traps at local optima.

Real world scenarios – Heuristics
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ANT COLONY OPTIMIZATION
It is a population based search technique for the solution 
of combinatorial optimisation problems.

• Inspired from real ants.

• Ants (who are almost blind) can find the shortest route to 
food source. 

Characteristics:

• Positive feedback.

• Distributed computation. 

Approach:

• Ants lay pheromones as signals for other ants.

• More ants follow a route, higher is its 
pheromone.

• Because of pheromone evaporation, always 
shorter routes are favoured. 
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Step 1: 
• Each ant chooses the next node.
• Iteration = Iteration + 1

Pick-up node 
Drop-off node
Pheromone trail

Depot

o Which node should I take?
o Is my capacity full?
o Hope no time-windows are 

getting violated!

Mechanism:

1. Ants choose next 
node based on 
pheromone (and 
shortest distance). 

2. Pheromone decays 
with time.
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Step 2: 
Each ant builds its route. 

Route Building:

• This process repeats 
for each ant.

• Cost of each route is 
computed.



Step 3: 
Routes of all the ants are compared. 

Depot

172 
154
180

Costs of routes of 
different ants:

Pheromone Update:

• Path with shortest cost 
is chosen.

• Pheromone is updated 
on that path.
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Depot

172 
154
180

Best route:

Step 4: Check if maximum iteration count is reached? 
• Yes – Stop generating routes.
• No – Steps 1 to 3 are repeated.

Iterations over:

The current route (solution) 
is accepted as the best 
one!
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Step 1: 
Randomly generate an initial solution

solution space

Randomly Generated 
Initial Solution



Neighbours

Neighbourhood 
Structure

Step 2: 
Explore all neighbours in a defined neighbourhood structure

solution space



cost function 200

cost function 400

cost function 350

cost function 500

cost function 450

Step 3: 
Evaluate the cost functions for all neighbours

solution space



Best neighbour
[minimum cost function]

cost function 200

cost function 400

cost function 350

cost function 500

cost function 450

Step 4: 
Find the best neighbour (neighbour with least cost function)

solution space



New 
neighbourhood

Best neighbour
selected as next step

Step 5: 
Select best neighbour as the next step

solution space



solution space

Step 6: 
Previous step(s) are considered as TABU for several iterations 

Previous Step
considered as TABU



Step 7: 
Repeat the steps until an optimal solution is obtained

solution space
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SIMULATED ANNEALING (SA)
A heuristic technique that mathematically mirrors the cooling of a set of atoms to a 
state of minimum energy.
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Can avoid local extrema!
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COMPARISON WITH BENCHMARK

Test
Instances Benchmark

Local Search 
+ Tabu Search

Ant Colony
Optimization

Local Search + 
Simulated 
Annealing
(Initialized 
using ACO)

Local Search + 
Simulated 
Annealing
(Initialized 
using TS)

PR01 190.019 190.019 203.896 190.019 190.019

PR02 301.34 306.546 345.272 305.348 305.258

PR03 532.00 564.730 689.023 548.283 556.698
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Observation:

• Ant colony optimisation takes longer time to converge to global optimum. 

• Tabu search is more likely to be trapped in local minima compared to simulated annealing. 

• The performance of simulated annealing is affected by the initial solution.

PR Data-sets for DARP: www.neumann.hec.ca/chairedistributique/data/darp/tabu
Cordeau, J.-F., and Laporte, G., A tabu search heuristic for the static multi-vehicle dial-a-ride problem, Transportation Research Part B: Methodological, vol. 37, no. 6, pp. 579-594, 2003.

http://www.neumann.hec.ca/chairedistributique/data/darp/tabu


GPU-ACCELERATED CLASSICAL TABU SEARCH
• 81.1% time spent on Neighborhood exploration phase for tabu search, 

and its independency makes it possible for parallel exploration.

Exploitation of heterogeneous platforms:

• Faster convergence to global optimal solution

• Faster attainment of initial solution 

• Exploration of complete neighborhood structure

• Efficiently solve bigger instances of dial-a-ride problem

28



OVERALL IMPLEMENTATION & CHALLENGES (RESOLVED)
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CPU CODES

Generate Random Initial solution 

Neighborhood Exploration in GPU

Final Solution

If iteration < 
max iteration

Initialize Tabu list & Coefficients

No

Yes

Choose the best admissible solution

Kernel 2: Neighborhood Move

Kernel 1: Data Setup

Kernel 3: Cost Evaluation

Kernel 4: Feasibility Update

Kernel 5: Data Streamline

GPU CODES

Challenges (Resolved):

• Thread Divergence

Neighborhood move with 100% branch 
efficiency

• Communication Latency

<0.03% overhead as leveraged by the 
data streamline kernel.

• Memory Hierarchy

Efficient Mapping of data structures 
appropriately into the GPU’s platform

• Kernel Grid Heuristic 

Dynamic kernel configuration tuning for 
maximum possible acceleration.

• Synchronization Time

Efficient organization of kernels in non-
blocking whenever possible.

• Algorithm Scalability

Host Streams with concurrent kernel design.
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COMPUTATIONAL TIME COMPARISON: CPU VS GPU

Test
Instances

Benchmark Requests Vehicles
Average Time for 10% 

Convergence
Average Speed up for

10% convergence
(GPU vs CPU)CPU GPU

PR01 190.019 24 3 0.056 0.681 12.16 x

PR02 301.34 48 5 0.360 7.463 20.73 x

PR03 532.00 72 7 4.751 81.656 17.81 x
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Accomplished

• Developed GPU-accelerated Classical Tabu Search Algorithm to solve multi-vehicle DARP instances.

• Several times faster attainment of near optimal solutions by using GPU on (Single Core) CPU.

• <0.03% communication latency between CPU-GPU makes the architecture scalable to multiple GPUs.

• Next: Revisit other algorithms to solve DARP by exploiting massively parallel platforms.
PR Data-sets for DARP: www.neumann.hec.ca/chairedistributique/data/darp/tabu. Each Instance is validated for 5 times repeatedly.
Cordeau, J.-F., and Laporte, G., A tabu search heuristic for the static multi-vehicle dial-a-ride problem, Transportation Research Part B: Methodological, vol. 37, no. 6, pp. 579-594, 2003.

.
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FLEET SIZE MINIMISATION
Objective:

• To optimise the number of vehicles needed to solve dial-a-ride problems.

Motivation:

• To operate with minimum possible fleet of vehicles to improve fuel efficiency.

• To increase the throughput (revenue, labour costs, etc.).
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RESULTS
• Given: 

• Number of requests = 48
• Number of vehicles = 5.

• Cost minimisation:
• Number of requests = 48.
• Number of vehicles = 5.
• Cost = 345.37 km.

• Fleet size minimisation:
• Number of requests served = 48.
• Number of vehicles used = 2.
• Cost = 361 km.

PR02 Test Instance

Vehicles Routes
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• Drop-off Point
• Pick-up Point
• Depot
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DYNAMIC DIAL-A-RIDE PROBLEM
• In dynamic DARP, new requests can arrive when the vehicles have started serving
existing requests.

• Objective: To generate an online routing plan for the vehicles as and when new
requests arrive.

• The existing routes might change to accommodate the new requests.
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DYNAMISM

0% 
Dynamism

(Static)

25%
Dynamism

50%
Dynamism

75%
Dynamism

100%
Dynamism

24 static 
requests

+
0 dynamic 

request

18 static 
requests

+
6 dynamic 
requests

12 static 
requests

+
12 dynamic 

requests

6 static 
requests

+
18 dynamic 

requests

0 static 
request

+
24 dynamic 

requests

Total = 24 requests
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HIGHER DYNAMISM  LESS TIME TO PLAN AHEAD
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Loss due to lack of 
knowledge about future 
requests 
→ Demand prediction!



TOWARDS SMARTER ROUTING ALGORITHMS

 Determine routes based on anticipated demand
 This will lead to more efficient routes

 Take real-time traffic conditions into account
 This will lead to more robust routes
 Continuous monitoring and potential adjustment of planned routes
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SIMULATION ENGINE

High-fidelity simulation platform to verify routing  
algorithms in real-life scenarios.

• Traffic data
• Weather information
• Road congestion due to accidents, blockages, etc.

• Less expensive than field trials.

• Low-cost tool for prototyping FMS algorithms
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TEST CASE: SENTOSA, SINGAPORE
Simulation:

• Replication of routes and intersections in Sentosa
from Google maps.

• Includes public transportation.

• Identification of conflict areas and assigning 
‘right-of-the-way’.

• Heterogeneous traffic with realistic traffic 
delays and other vehicle behaviours.

• Initial steps towards demand modeling

• Implementation of routing algorithms using 
Vissim COM.
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Singapore Map

Public Transport & Heterogeneous FleetConflict Areas on the Map

Sentosa Map



SIMULATION ENGINE - ARCHITECTURE
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SINGLE VEHICLE DARP SIMULATION
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CONCLUSION & FUTURE WORK
Conclusion:

• Solved the dial-a-ride problem using different meta-heuristic algorithms.

• Carried out a comparative study on the performance of various meta-heuristic
algorithms on different test instances.

• Solved the dynamic dial-a-ride problem using different meta-heuristic algorithms.

• Proposed an approach to optimise the fleet size in DARP.

Future Work:

• Customer demand modelling to design robust algorithms for on-demand mobility.

• Real-time traffic data (time-varying travel times)
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