

Introducción a los Sensores Distribuidos en Fibra Óptica: Fundamentos y Aplicaciones

MARÍA ROSARIO FERNÁNDEZ-RUIZ

Photonic Engineering Research Group– University of Alcala (Spain)

IEEE Instrumentation and Measurement Society - Spain Chapter – 10/04/2024

- 1. Fundamentals of optical fibers 2. Distributed sensing in optical fibers: definition and types
	- 3. Distributed acoustic sensing (DAS)
	- 4. DAS in the University of Alcalá
	- 5. Applications of DAS
	- 6. Conclusions

Table of contents

1. Fundamentals of optical fibers

- 2. Distributed sensing in optical fibers: definition and types
- 3. Distributed acoustic sensing (DAS)
- 4. DAS in the University of Alcalá
- 5. Applications of DAS
- 6. Conclusions

1. Fundamentals of optical fibers

Optical fiber: long, thin strand of carefully drawn glass (SiO₂) about the diameter of a human hair that transmits light signals. Those signals carry data (i.e., information), which is transmitted at very high speed over very long distances.

An optical carrier wave is modulated to carry the information.

 $250 \ \mu m$

 r_{v}

1. Fundamentals of optical fibers

Optical fiber: long, thin strand of carefully drawn glass (SiO₂) about the diameter of a human hair that transmits light signals. Those signals carry data (i.e., information), which is transmitted at very high speed over very long distances.

- **An optical carrier wave is modulated to carry the information.**
- **Core of current telecommunication networks.**

- **Limitations of ligth propagation in optical fibers:**
	- Attenuation \rightarrow Loss of intensity with propagation (<0.2dB/km at C band ~1550nm)
	- Dispersion \rightarrow Pulse broadening due to different velocity of different spectral components
	- Non-linear effects \rightarrow Signal distortion caused by propagation of high power

1. Fundamentals of optical fibers

- **Scattering effects: process by which ligth, interacting with a material medium, is radiated in an arbitrary is** direction.
	- Rayleigh \rightarrow One of the main actors in attenuation. Elastic process (no change in the scattering wavelength, electronic excitation or de-excitation). Wavelength dependent, following a $\propto 1/\lambda^4$ dependency,
	- **Brillouin and Raman** \rightarrow **Inelastic processes: the energy of the incident and scattered photons is different, an** interchange with the propagation medium is produced. They can be spontaneous or stimulated. Stimulated scattering is used to develop temperature and/or strain sensors.

7

- 1. Fundamentals of optical fibers
- 2. Distributed sensing in optical fibers: definition and types
- 3. Distributed acoustic sensing (DAS)
- 4. DAS in the University of Alcalá
- 5. Applications of DAS
- 6. Conclusions

- **Demoglem** Optical sensor: system composed of a transducer, a communication channel and a subsystem to generate and/or detect, process and condition the signal, such that light is used in one of the subsystems.
- **Depetical fiber sensor (OFS): optical sensor in which any of the processes or parts use fiber optic** technology.
- **OFS** can be classified as a function of several factors:

- **Advantages of optical fiber sensors with respect to competing (e.g., electrical) sensors:**
	- They are not affected by electromagnetic radiation.
	- Do not emit electromagnetic radiation
	- Remote sensing over long distances
	- Safety against deflagration
	- Ease of multiplexing using a single optical fiber
	- Small size and weight
	- Ability to monitor in real time
	- High temperature tolerance
	- Stable and durable
- **Disadvantages**
	- Little selectivity in some cases
	- Cost

Classification by spatial distribution:

Universidad
de Alcalá

N sensors, N wires,

N calibrations

- **Characteristics:**
	- Less spatial resolution that point or quasi-distributed sensors
	- **Much more sensing points, in the tens of thousand range**
	- Each section of fiber is a sensor
	- **Reduced cost per monitored point**
- **Types of distributed optical fiber sensors (DOFS):**
	- Raman scattering
	- Brillouin scattering
	- Rayleigh scattering

- **Distributed optical fiber sensing based on Raman Scattering:**
	- There is a pump signal whose photons are annihilated to create lower energy photons and optical phonos (vibrational states of the silica molecule)
	- Only sensitive to temperature variations: Distributed temperature sensing (DTS):

- **Distributed optical fiber sensing based on Raman Scattering:**
	- There is a pump signal whose photons are annihilated to create lower energy photons and optical phonos (vibrational states of the silica molecule)
	- Only sensitive to temperature variations: Distributed temperature sensing (DTS):

- **Typical performance:**
	- Range: 20 km
	- Spatial resolution: 1 meter
	- Sampling rate: Hz
	- Temperature accuracy: 1ºC

- **Distributed optical fiber sensing based on Brillouin Scattering:**
	- There is a pump signal whose photons are annihilated to create lower energy photons and acoustic phonos (acoustic vibration, pressure waves)
	- **Sensitive to temperature and strain variations**

- **Distributed optical fiber sensing based on Brillouin Scattering:**
	- There is a pump signal whose photons are annihilated to create lower energy photons and acoustic phonos (acoustic vibration, pressure waves)
	- Sensitive to temperature and strain variations

- **Typical performance:**
	- Range: 50 km
	- Spatial resolution: 1 meter
	- Sampling rate: mHz
	- Temperature/Strain accuracy: 1ºC/ 10 με

- **Distributed optical fiber sensing based on Rayleigh Scattering:**
	- Elastic (linear process)
	- Sensitive to temperature and strain variations
	- Main **current research line** in the Photonics Engineering Group of the UAH

The fiber can be seen as a series of closely-packed refractive index discontinuities, each one causing a tiny amount of reflection.

Reference: P. Lu et al., Applied Physics Reviews, 6 (4) (2019)

- **Types of Rayleigh scattering-based DOFS:**
	- Incoherent optical time-domain reflectometry (OTDR)
		- **OTDR** finds the cut when it has already occurred

- Types of Rayleigh scattering-based DOFS:
	- Coherent optical frequency-domain reflectometry (OFDR)
- **Typical performance:**
	- Range: Few meters
	- Spatial resolution: 10 μm-cm's
	- Sampling rate: Hz
	- Temperature/Strain accuracy: 0.1ºC/ 1 με

Reference: Ding, Z.; Wang, et al. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review. *Sensors* 2018, *18*, 1072.

- **Types of Rayleigh scattering-based DOFS:**
	- Coherent (phase-sensitive) OTDR: ΦOTDR

Trace = physical state \qquad Consecutive traces \rightarrow Continuous monitoring

- Types of Rayleigh scattering-based DOFS:
	- Coherent (phase-sensitive) OTDR: ΦOTDR

- Coherence length $>$ pulse length \rightarrow illuminated region \rightarrow becomes an interferometer!
- **Fingerprint evolution from shot to shot under** local fiber perturbations
- Signal from some regions will sum-up zero \rightarrow fading random points of the final trace
- **Provides relative measurements with respect to** an initial state: ΔT or Δε !!

- Typical performance of ΦOTDR:
	- Range: 40 km
	- Spatial resolution: few meters
	- Sampling rate: kHz
	- Temperature/Strain accuracy: 0,01ºC / 0,1 με

Introduction to Distributed Optical Fiber Sensing:

Introduction to Distributed Optical Fiber Sensing:

- 1. Fundamentals of optical fibers
- 2. Distributed sensing in optical fibers: definition and types
- 3. Distributed acoustic sensing (DAS)
- 4. DAS in the University of Alcalá
- 5. Applications of DAS
- 6. Conclusions

■ What is a distributed acoustic sensor?

- Distributed optical fiber sensor where the interrogated fiber acts simultaneously as sensing element and transmission channel.
- DAS interrogator typically sends coherent light into the fiber and acquires and processes Rayleigh backscattering light.
	- Sampling frequency $=$ pulse repetition rate < c/2nL (acoustic range, in the kHz regime)
	- Dense network of distributed microphones

- **Random pattern changes if perturbation occurs**
- Localized vibrations: \rightarrow Variations over time at that location synchronized with applied vibrations (but the detected response is nonlinear, and even non-monotonic!!)

3. Distributed acoustic sensing (DAS)

Development of AI to obtain RELIABLE threat/non-threat classification of the acoustic events

Different Machines/Activities = Different patterns \rightarrow Distinction is possible

27

 $\mathbf{y} = \int_{0}^{z} \frac{2\omega n(\xi)}{d} d\xi$

c

- **Linear strain/temperature determination suitable for acoustic sensing:**
	- Phase-demodulation using coherent detection of traces $(z') = \int_0^{z'} \frac{2\omega n(\xi)}{c}$

$$
\phi(z^{\prime}) = \int_0^{z^{\prime}} \frac{2\omega n(\xi)}{c} d\xi \qquad n = c_{\varepsilon} \Delta \varepsilon + c_{\varepsilon} \Delta T
$$

But….

- Shot-to-shot phase changes between consecutive points have to be $\leq 2\pi$: trade-off between resolution and strain range.
- Phase unwrapping is unstable with noise
- High sensitivity to **fading** \rightarrow Non stable SNR in all sensing points.

- 1. Fundamentals of optical fibers
- 2. Distributed sensing in optical fibers: definition and types
- 3. Distributed acoustic sensing (DAS)
- 4. DAS in the University of Alcalá
- 5. Applications of DAS
- 6. Conclusions

- **IMPROVEMENTS with respect to typical performance:**
	- Ranges of > 100 km reached using distributed Raman amplification
		- \blacksquare 1st order: up to 250 Hz over 125 km
		- 2nd order: up to 390 Hz over 125 km (higher SNR, reaching physical limit)
		- **10 m resolution**

- **IMPROVEMENTS with respect to typical performance:**
	- Spatial resolutions of ≤ 1 m have been reached using pulse coding \rightarrow live data of an operating optical communication channel (Binary PSK at 4 Gbaud).
		- **125 kHz over 500 m**
		- 21 dB increase in SNR
		- 2.5 cm spatial resolution
		- Broad detection bandwidth (GHz) \rightarrow Higher cost and noise

H. F. Martins et al., Opt. Express, 24 (19), 22303, (2016) EEE IMS - 10/04/2024 31

- **IMPROVEMENTS with respect to typical performance:**
	- Linear temperature/strain determination using direct detection \rightarrow Chirped pulse DAS
		- Insensitive to polarization/phase fading \rightarrow Steady sensitivity
		- Phase noise compensation methods \rightarrow Lower requirements in laser source
		- Broader detection bandwdith

4. DAS in the University of Alcalá

Chirped pulse DAS

Trace recovery principle at each point:

J. Pastor-Graells et al., Opt. Express, 24 (12), 2016

0 $1/$ | ΔV_p *p* $\frac{n}{r} = -\left(\frac{1}{r}\right) \cdot \left(\frac{\Delta V_p}{\tau}\right) \cdot \Delta t$ *n* ν V_0 | | | | τ $\Delta n / n = -\left(\frac{1}{\nu_0}\right) \cdot \left(\frac{\Delta \nu_p}{\tau_p}\right) \cdot \Delta$ 0 $n/2 = \Delta V / \approx -0.78$ *n* $v / \approx -0.78 \cdot \Delta \varepsilon$ $\Delta n / \sqrt{\Delta n} = \Delta V / \sqrt{\Delta n} \approx -0.78 \cdot \Delta$

Linear Every shot ! \rightarrow Dynamic! Every point ! \rightarrow Steady SNR mK/nε resolution !

4. DAS in the University of Alcalá

- Chirped pulse DAS
	- Good linearity and extremelly high sensitivity (pe/\sqrt{Hz}):
	- **Excellent dynamics:** Tens of km range preserving the performance

- Chirped pulse DAS:
	- Phase noise compensation methods \rightarrow Lower requirements in laser source

- Chirped pulse DAS - Summary:

- Insensitive to fading noise \rightarrow Steady sensitivity
- Phase noise compensation methods \rightarrow Lower requirements in laser source
- Use of technique typically employed in time-delay estimation (TDE) techniques \rightarrow Record sensitivity for a long-range DOFS
- Broader detection bandwdith \rightarrow Need for 10x time-bandwidth product pulses
- These features have made *chirped-pulse DAS* a highly competitive technology currently commercialized by:
	- ARAGÓN (Spain)
		- (Switzerland)

- **IMPROVEMENTS with respect to typical performance:**
	- High spatial resolution using ultra-narrow band detection \rightarrow Time-expansion DAS
		- Based on **dual comb spectroscopy** concepts: Optical sampling

The result is a discretized version of the periodic signal, with a period that can become enlarged by orders of magnitude

- **IMPROVEMENTS with respect to typical performance:**
	- High spatial resolution using ultra-narrow band detection \rightarrow Time-expansion DAS
		- In spectral domain:

The above down-conversion is governed by the compression factor (CF) given by $CF = f/\delta f$.

- **IMPROVEMENTS with respect to typical performance:**
	- **High spatial resolution** using ultra-narrow band detection \rightarrow Time-expansion DAS

- **Programable optical frequency combs:**
	- Arbitrary waveform generator (AWG) \rightarrow \$\$\$
	- RF-SoC based on field programable gate array (FPGA) \rightarrow Under study

4. DAS in the University of Alcalá

121.92 121.93 121.94

Acquisition Time (s)
 $\frac{1}{10}$ a
 $\frac{1}{10}$ b

20

10

 $10⁰$

 $\frac{\text{ASD (rad/Hz)}}{\text{C}}$

 10

 Ω

 0.8

 0.6

 0.4

 0.2

 -0.2 -0.4

 $|0|$

Detection bandwidth is 200 kHz !!!

Phase (rad)

 0.5

 -0.5

 Ω

 \mathcal{D}

 $L = 154 m$

Metallic

Wires

Article Men Her And Harley Ward Hard Start

Current

Flow

HOT

SPOT

Fiber

16

18 20

los valores and

floor y accuracy
The second state of the second

Time (s)

Accuracy = 0.09 rad (55 mK, 490 $n\epsilon$)

2 cm

121.96

121.97

.95

 $10⁰$

Position (m)

Frequency (Hz)

121.98 121.99

10

9

Temperature Change (°C)

4. DAS in the University of Alcalá

Time-expansion DAS - Summary:

TE- ϕ OTDR technology arises as a novel optical fiber interrogation method that covers a performance gap between OFDR and ϕ OTDR technologies.

- **Fibers of hundreds of meters (500 m) could be monitored dynamically (1 kHz sampling rate) with** centimeter spatial resolution (2 cm) with low-detection bandwidth (sub-MHz).
- **Such performance may open the door for the use of DAS to entirely new areas of application, e.g.,** aeronautics, medicine, transportation, manufacturing, etc.
- **Technology patented by**

- 1. Fundamentals of optical fibers
- 2. Distributed sensing in optical fibers: definition and types
- 3. Distributed acoustic sensing (DAS)
- 4. DAS in the University of Alcalá
- 5. Applications of DAS
- 6. Conclusions

- **UAH projects:**
	- DOMINO: Dikes and debris flows monitoring by novel optical fiber sensors
		- **European research project that aims at developing novel optical fiber sensors for the** monitoring of dikes and debris flows.

- **UAH projects:**
	- **PIT-STOP: Detección Temprana de Amenazas a la Integridad de Gasoductos** usando Tecnología de Fibra Óptica
		- Use of a non-linear DAS to monitor potential threats (e.g., movements of heavy machinery) nearby a gas pipeline

UAH projects:

e Alcalá

- SUBMERSE: Submarine cables for research and exploration
	- **EU-funded project which aims to utilise existing submarine cables, already used by the** research and education networking community, to monitor the Earth and its systems: seismology, continental plate movement, etc.

IEEE IMS – 10/04/2024

- **UAH projects:**
	- SAFE: Tsunami early warning system using available seafloor fiber cables
		- **EU-funded project that targets the repurpose of already-available fiber-optic cables** installed for communication purposes as key sensor for tsunami early warning at a marginal extra cost.

Introduction to Distributed Optical Fiber Sensing:

Introduction to Distributed Optical Fiber Sensing:

- **UAH projects:**
	- SEASNAKE+: Industrial upscale of surface protection system & fibre opticbased condition monitoring for the SEASNAKE MVC (Medium Voltage Cables)
		- **EU-funded project that uses of TE-DAS** for implementation of **distributed, dynamic shape sensing**

- **UAH projects:**
	- MOTION: Sondas para instrumentación inteligente basadas en sensado acústico distribuido de tiempo expandido
		- National-funded project that uses of TE-DAS for implementation of distributed, dynamic shape sensing on specialty fibers engineered to also perform chemical sensing.

- **Lab tests:**
	- **Monitoring of the flexible wing of an unmanned aerial vehicle (UAV), in** colaboration with Capgemini S.L.

8.5

- A distributed optical fiber sensor (DOFS) is capable of measuring the spatial distribution of one or more physical parameters (or measurands) at each and every point along a sensing fiber.
- **Today, DOFS systems have gained widespread usage, primarily for real-time monitoring of the** structural integrity of expansive civil infrastructures and the changes in environmental conditions.
- **A** distributed acoustic sensor (DAS) is a DOFS with a sampling rate in the acoustic regime.
- **Recent developments in UAH target:**
	- Linear DAS with steady (robust against fading noise) and ultra-high sensitivity along tens of kilometers of fibers
	- Ultra-high spatial resolution DAS with low-cost and low-power consumption scheme, covering a gap between state-of-the art DAS in the market.
	- Analysis and adaptation of DAS for its use in novel areas of application

MINISTERIO DE CIENCIA

E INNOVACIÓN

Financiado por

la Unión Europea NextGenerationEU

European

Council

Innovation

Plan de Recuperación
Transformación y
Resiliencia

AGENCIA
ESTATAL DE
INVESTIGACIÓN

Acknowledgements

UNIÓN EUROPEA Fondo Social Europeo

El Fondo Social Europeo invierte en tu futuro

UNIÓN EUROPEA Fondos estructurales

Invertimos en su futuro

Thank you for your attention!

Photonics Engineering Group (GRIFO)