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1. Fundamentals of optical fibers

= Optical fiber: long, thin strand of carefully drawn glass (Si0O,) about the diameter of a human
hair that transmits light signals. Those signals carry data (i.e., information), which is transmitted

at very high speed over very long distances. TN
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1. Fundamentals of optical fibers

= Optical fiber: long, thin strand of carefully drawn glass (Si0O,) about the diameter of a human
hair that transmits light signals. Those signals carry data (i.e., information), which is transmitted
at very high speed over very long distances. I
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= An optical carrier wave is modulated to carry the information.

= (Core of current telecommunication networks.
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1. Fundamentals of optical fibers

= Limitations of ligth propagation in optical fibers:
= Attenuation =2 Loss of intensity with propagation (<0.2dB/km at C band ~1550nm)
= Dispersion =2 Pulse broadening due to different velocity of different spectral components

= Non-linear effects = Signal distortion caused by propagation of high power
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Introduction to Distributed Opt

1. Fundamentals of optical fibers

Fundamentals and Ap

= Scattering effects: process by which ligth, interacting with a material medium, is radiated in an arbitrary
direction.

= Rayleigh = One of the main actors in attenuation. Elastic process (no change in the scattering wavelength,
electronic excitation or de-excitation). Wavelength dependent, following a « 1/A* dependency,

= Brillouin and Raman = Inelastic processes: the energy of the incident and scattered photons is different, an
interchange with the propagation medium is produced. They can be spontaneous or stimulated. Stimulated
scattering is used to develop temperature and/or strain sensors.

Rayleigh
I
Brillouin | Brillouin
Raman Raman
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2. Distributed sensing in optical fibers: definition and types

= QOptical sensor: system composed of a transducer, a communication channel and a subsystem to
generate and/or detect, process and condition the signal, such that light is used in one of the
subsystems.

= Optical fiber sensor (OFS): optical sensor in which any of the processes or parts use fiber optic
technology.

.u
c

E ; = OFS can be classified as a function of several factors:
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2. Distributed sensing in optical fibers: definition and types

= Advantages of optical fiber sensors with respect to competing (e.g., electrical) sensors:
= They are not affected by electromagnetic radiation.
= Do not emit electromagnetic radiation
= Remote sensing over long distances
= Safety against deflagration
= Ease of multiplexing using a single optical fiber
= Small size and weight

= Ability to monitor in real time
= High temperature tolerance
= Stable and durable

= Disadvantages
= Little selectivity in some cases
= Cost

Introduction to Distributed Opt
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2. Distributed sensing in optical fibers: definition and types

= Damage

= C(Classification by spatial distribution: * sensor
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2. Distributed sensing in optical fibers: definition and types

= (Characteristics:

= | ess spatial resolution that point or quasi-distributed sensors

= Much more sensing points, in the tens of thousand range

s 5 = Each section of fiber is a sensor

c
g 'é = Reduced cost per monitored point

c
§ 2 = Types of distributed optical fiber sensors (DOFS):
23 .
5 .:5: = Raman scattering
;f’ = Brillouin scattering
E = Rayleigh scattering
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2. Distributed sensing in optical fibers: definition and types

= Distributed optical fiber sensing based on Raman Scattering:

= There is a pump signal whose photons are annihilated to create lower energy photons and optical
phonos (vibrational states of the silica molecule)

= Only sensitive to temperature variations: Distributed temperature sensing (DTS):

g © Rayleigh
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Introduction to Distributed Opt

2. Distributed sensing in optical fibers: definition and types

Fundamentals and Ap

= Distributed optical fiber sensing based on Raman Scattering:

= There is a pump signal whose photons are annihilated to create lower energy photons and optical
phonos (vibrational states of the silica molecule)

= Only sensitive to temperature variations: Distributed temperature sensing (DTS):

= Typical performance:
= Range: 20 km
= Spatial resolution: 1 meter
= Sampling rate: Hz

= Temperature accuracy: 1°C

#2% Universidad
#8% de Alcala

Backscattered

n

power

‘MM‘

time

IEEE IMS - 10/04/2024 14



2. Distributed sensing in optical fibers: definition and types

= Distributed optical fiber sensing based on Brillouin Scattering:

= There is a pump signal whose photons are annihilated to create lower energy photons and acoustic
phonos (acoustic vibration, pressure waves)

= Sensitive to temperature and strain variations
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2. Distributed sensing in optical fibers: definition and types
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2. Distributed sensing in optical fibers: definition and types

= Distributed optical fiber sensing based on Brillouin Scattering:

= There is a pump signal whose photons are annihilated to create lower energy photons and acoustic
phonos (acoustic vibration, pressure waves)

Av < AT or Ae |-

= Sensitive to temperature and strain variations

o) : ..
g © 002"
8§ = Typical performance: s -
g = g 001
o) g = Range: 50 km K OZ
23 . | b
- C = Spatial resolution: 1 meter 4570
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2. Distributed sensing in optical fibers: definition and types

= Distributed optical fiber sensing based on Rayleigh Scattering:
= Elastic (linear process)
= Sensitive to temperature and strain variations

= Main current research line in the Photonics Engineering Group of the UAH

o
'
E i
23
g = Fiber Cladding
Qs o
o ® o \ /ﬂ e
+ O (&) Input Light Forward Propagating Light
c < _ _ — é} < A ——n
S The fiber can be seen as a series of 2 fﬂ
2 closely-packed refractive index u Backscattered Light
3 discontinuities, each one causing a tiny Fiber Cladding
= amount of reflection.
Reference: P. Lu et al., Applied Physics Reviews, 6 (4) (2019)
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2. Distributed sensing in optical fibers: definition and types

= Types of Rayleigh scattering-based DOFS:
* |ncoherent optical time-domain reflectometry (OTDR)

= OTDR finds the cut when it has already occurred
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2. Distributed sensing in optical fibers: definition and types

= Types of Rayleigh scattering-based DOFS:

= Coherent optical frequency-domain reflectometry (OFDR)

Reference path

5 . oA S v LO signals
= Typical performance: . Tunable
AF : laser source Coupler
Sk o l
O o = Range: Few meters ! | Fiber under est
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o] FFT Iy
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2. Distributed sensing in optical fibers: definition and types

= Types of Rayleigh scattering-based DOFS: |
= Coherent (phase-sensitive) OTDR: ®OTDR @ i

A ' Fibre length limits

5 & [T w w2 ey repetition ratio
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#2% Universidad IEEE IMS — 10/04/2024 o1

#8% de Alcala



2. Distributed sensing in optical fibers: definition and types

= Types of Rayleigh scattering-based DOFS:
= Coherent (phase-sensitive) OTDR: ®OTDR

®OTDR |0 — . .
imterscgator | ) 'CD ) = Coherence length > pulse length = illuminated
= " region = becomes an interferometer!
g ®© 0.25 Fresnel reflections (bare fiber end}
(%) 3 : : :
=§ [ 3 vol A | Decay and fading poias \ ] = Fingerprint evolution from shot to shot under
: ] “ . -
a e %0.1; J / Toss at bends | local fiber perturbations
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€ S 2 N L = Signal from some regions will sum-up zero >
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E o fading random points of the final trace
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£ "7 Plerpesition (km) = Provides relative measurements with respect to
an initial state: AT or Ae !!
i gnj\vlersiifi ad IEEE IMS — 10/04/2024 29
s de cala




2. Distributed sensing in optical fibers: definition and types

= Typical performance of ®OTDR:
= Range: 40 km

= Spatial resolution: few meters

= Sampling rate: kHz

a <
2.
E 'g = Temperature/Strain accuracy: 0,01°C/ 0,1 pe
Qo ﬁ Instantaneous perturbation
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3. Distributed acoustic sensing (DAS)

= What is a distributed acoustic sensor?

= Distributed optical fiber sensor where the
interrogated fiber acts simultaneously as
sensing element and transmission
channel.

DAS interrogator typically sends coherent
light into the fiber and acquires and
processes Rayleigh backscattering light.

= Sampling frequency = pulse repetition rate

Fundamentals and

< ¢/2nL (acoustic range, in the kHz

regime)

Introduction to Distributed (

= Dense network of distributed microphones
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Introduction to Distributed O

Fundamentals and Ap |

3. Distributed acoustic sensing (DAS)

= Random pattern changes if perturbation occurs

* Localized vibrations: — Variations over time at that location synchronized with applied
vibrations (but the detected response is nonlinear, and even non-monotonic!!)

Fiber Disturbance D
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3. Distributed acoustic sensing (DAS)

= Development of Al to obtain RELIABLE threat/non-threat classification of the acoustic events

Different Machines/Activities = Different patterns — Distinction is possible

4

l

I n Plate compactor: ~58 Hz
€ ~ :
E 5 - J\ ' n Big excavator R916: ~5 Hz
22 S| &
= & ) l
a e = I n Small excavator E39B: ~21 Hz
o ® —Y AR 2
- T —
c € Q I
2 D £ | n Tractor MF 7619: ~20 Hz
o <C
= E)
3 l
'E’ : n Pneumatic hammer: ~25 Hz
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3. Distributed acoustic sensing (DAS)

= Linear strain/temperature determination suitable for acoustic sensing:

= Phase-demodulation using coherent detection of traces #(z') = Iz'za’”_(f)dé: n=cAe+c, AT
0 c
But....
= Shot-to-shot phase changes between consecutive points have to be <2x: trade-off between
resolution and strain range.

= Phase unwrapping is unstable with noise
= High sensitivity to fading = Non stable SNR in all sensing points.

ight

Fundamentals and App

Introduction to Distributed Optic
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4. DAS in the University of Alcala

* |mprovements with respect to typical performance:

= Ranges of > 100 km reached using distributed Raman amplification
= 1storder: up to 250 Hz over 125 km

Q = 2" order: up to 390 Hz over 125 km (higher SNR, reaching physical ligit)
Q i
— = 10 m resolution
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Introduction to Distributed Op

4. DAS in the University of Alcala

Fundamentals and A|

= |mprovements with respect to typical performance:

= Spatial resolutions of < 1 m have been reached using pulse coding = live data of
an operating optical communication channel (Binary PSK at 4 Gbaud).

125 kHz over 500 m
21 dB increase in SNR .
2.5 cm spatial resolution = 5

Broad detection bandwidth (G\I/-Iz) - Higher cost and noise
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4. DAS in the University of Alcala

= |mprovements with respect to typical performance:

= Linear temperature/strain determination using direct detection 2
Chirped pulse DAS

= |nsensitive to polarization/phase fading = Steady sensitivity

= Phase noise compensation methods = Lower requirements in laser source
c . .
g © = Broader detection bandwdith
a Q9
g .g 1.5
L o 1,2 £ — Chirp,= 0,81 GHz ;
g g 0,9 F —— Chirp,= 1,62 GHz :
S5 — 0.6 E —— Chirp,= 2,35 GHz
S S T 03 —
" m (D :_ = ' '
g <= 0,0 E =
= > 203 b—""~
'g time 3 -06 F AL
- =
= -09 F
= 12 F
5 -1,5 &
J. Pastor-Graells et al., 0O 10 20 30 40 50 60 70 80 90
Opt. Express, 24 (12) 13121, (2016) Time (ns)
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4. DAS in the University of Alcala

= Chirped pulse DAS A’/?(/ j AV’/ »
= Trace recovery principle at each point: n Vo T,

An/ _Av/ ~ _ !
A_ AON 0.78-Ae

078' llllllllllllllll

0,7
0.6 At(chirp) = 0.43 ns

ERy Linear

< 04 Every shot! = Dynamic!

© .
= 203 Every point | = Steady SNR
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4. DAS in the University of Alcala

= Chirped pulse DAS
= Good linearity and extremelly high sensitivity (pe/VHz):
= Excellent dynamics: Tens of km range preserving the performance

= a) 150 b) L
g & g ——Applied | - 9
[= < 100 ¢ —— Measured | ] ’
o - 1410 e !

O ] 10 &
5 1) > £ 30 &
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Q E - 2 — s o B g
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4. DAS in the University of Alcala

= Chirped pulse DAS:
= Phase noise compensation methods = Lower requirements in laser source

PUI;H Trace 1 Pugz Trace 2 Pui-se3 Trace 3

i._ dt;;{l‘) I:Ur(m
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K -g 8 i
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o -60: i _ =i
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0 0 -10 -5 0 5 10
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Fundamentals and

Introduction to Distributed C

4. DAS in the University of Alcala

= Chirped pulse DAS - Summary:
= |nsensitive to fading noise > Steady sensitivity
= Phase noise compensation methods = Lower requirements in laser source
= Use of technique typically employed in time-delay estimation (TDE) techniques = Record sensitivity for
a long-range DOFS
= Broader detection bandwdith = Need for 10x time-bandwidth product pulses
* These features have made chirped-pulse DAS a highly competitive technology
currently commercialized by:
PHOTONICS
. (Switzerland) e . omnisenst” |
"':!!Il'HH::f.|::::mum"""!! I"“""liu g
e U
% Universidad IEEE IMS — 10/04/2024 36
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4. DAS in the University of Alcala

= |mprovements with respect to typical performance:

= High spatial resolution using ultra-narrow band detection = Time-expansion DAS
= Based on dual comb spectroscopy concepts: Optical sampling

Periodic signal
-~ — - — —»

_ H l Time
Gating pulses W W «/J)/\/- scale

Fundamentals and Af

Introduction to Distributed

T, =1 :
2=/f, = ,
. ~ Enlarged
* " time scale
The result is a discretized version of the periodic signal, with
a period that can become enlarged by orders of magnitude
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4. DAS in the University of Alcala

= |mprovements with respect to typical performance:

= High spatial resolution using ultra-narrow band detection = Time-expansion DAS
= |n spectral domain:

- Gl £+E’£- Backscattered
B T |} : field
§ — »
@ 11

2w Comb2 je—r _

_g S ) Gating pulses

Qg T

o8 e o3 1 F v 1 &

"E = 20 N T TR T T T |

S 32 .

§ Spec{;{\‘f)m St I First Nyquist

3 1 Y zone

-Er Frequency

The above down-conversion is governed by the compression factor

£ Universi (CF) given by CF = f /6f.
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4. DAS in the University of Alcala

= |mprovements with respect to typical performance:

= High spatial resolution using ultra-narrow band detection = Time-expansion DAS
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4. DAS in the University of Alcala

= Programable optical frequency combs:
= Arbitrary waveform generator (AWG) = $$$
= RF-SoC based on field programable gate array (FPGA) = Under study

' =Y
Real waveform

Ar Aw L A
@ P Pn

. w—

®© L fe fr
23
c
% 5 /
Q £
S3 0
S S e . . -
g@& = Excellent flexibility, arbitrary selection of: / O e
_§ = Frequency v; Electro—op.tical r/ ““““ i
= modulation R R R
= = Amplitude 4; ‘ ‘ | - ‘ ‘ ‘
= Phase Q; Double sideband Yo H f
o modulation % ki J
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Introduction to Distribute

4. DAS in the University of Alcala

Fundamentals a

ASD (rad/v Hz)
S § 9 o
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= Detection bandwidth is 200 kHz Il
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4. DAS in the University of Alcala

= Time-expansion DAS - Summary:
= TE-¢OTDR technology arises as a novel optical fiber interrogation method that covers a performance
gap between OFDR and ¢OTDR technologies.

®OTDR

S a Range: 10’s km
- - 4 2 Spatial Res: 10's m TE'_(DOTDR
'g § Sampling: 1-10 kHz Rar\ge. 10m -2km OFDR
o : Spatial Res: 0.5-4 cm o,
P S Sampling: 10 Hz-1 kHz Range: 10's m
2s S Spatial Res: mm-cm
g s n Sampling: 1Hz-10’s Hz
iR = >
es Spat. Res.
5 = = Fibers of hundreds of meters (500 m) could be monitored dynamically (1 kHz sampling rate) with
§ = centimeter spatial resolution (2 cm) with low-detection bandwidth (sub-MHz).
E = Such performance may open the door for the use of DAS to entirely new areas of application, e.g.,
= aeronautics, medicine, transportation, manufacturing, etc.
= Technology patented by E)ARAEI'_‘IN
PHOTONICS
: Universidad IEEE IMS — 10/04/2024
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Introduction to Distributed O

5. Applications of DAS

Fundamentals and /

= UAH projects:

= DOMINO: Dikes and debris flows monitoring by novel optical fiber sensors

= European research project that aims at developing novel optical fiber sensors for the
monitoring of dikes and debris flows.

é % Uﬂl"erﬂfhd https://domino.dei.unipd.it/ IEEE IMS - 10/04/2024 45
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5. Applications of DAS

= UAH projects:

= PIT-STOP: Deteccion Temprana de Amenazas a la Integridad de Gasoductos
usando Tecnologia de Fibra Optica

= Use of a non-linear DAS to monitor potential threats (e.g., movements of heavy
machinery) nearby a gas pipeline

Fundamentals anc

Time (a.u.).

Introduction to Distributed
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5. Applications of DAS

= UAH projects:

= SUBMERSE: Submarine cables for research and exploration

= EU-funded project which aims to utilise existing submarine cables, already used by the

.o. g research and education networking community, to monitor the Earth and its systems:
3 'g seismology, continental plate movement, etc.

S0

P B _1-?-:' _1Ed C _____ - DAS

g c ; 'if’ﬁ Eilalgjgh e
P (1) BOST  0.50-1.00 Hz NS

Q E PKI pPKF

28

g g 0.20-0.60 Hz

B L.

: 010030 Hz

£

=

Time (s)

#2% Universidad https://submerse.eu/
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5. Applications of DAS

= UAH projects:

= SAFE: Tsunami early warning system using available seafloor fiber cables

= EU-funded project that targets the repurpose of already-available fiber-optic cables
installed for communication purposes as key sensor for tsunami early warning at a

marginal extra cost.

How a tsunami occurs

(B An earthquake R
rocks the === =
ccean floor

(B Displaces
volume of Uy
water, pushing
itup

E) setsoffan
oscillation,
which develops
underwater at
great speed

£ Sea water is ——
sucked back N
from the shore \

Fundamentals and 2

Introduction to Distributed O

Waves get -
bigger as ‘
waler gets
shallower

Sources: Natura'USGS
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5. Applications of DAS

= UAH projects:

= SEASNAKE+: Industrial upscale of surface protection system & fibre optic-
based condition monitoring for the SEASNAKE MVC (Medium Voltage Cables)

= EU-funded project that uses of TE-DAS for implementation of distributed, dynamic shape

sensing

Fundamentals and Apy

Introduction to Distributed Optic

#2% Universidad
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Introduction to Distributed

5. Applications of DAS

Fundamentals anc

= UAH projects:

= MOTION: Sondas para instrumentacion inteligente basadas en sensado
acustico distribuido de tiempo expandido

= National-funded project that uses of TE-DAS for implementation of distributed, dynamic
shape sensing on specialty fibers engineered to also perform chemical sensing.

#2% Universidad
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5. Applications of DAS

= Lab tests:

= Monitoring of the flexible wing of an unmanned aerial vehicle (UAV), in
colaboration with Capgemini S.L.

a)

’(l, .

a g |
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o m E ] i ‘g 0} \v“"-lll [
g ? - ® 400 Wi b) Strain vs Acquisition time c) FFT
. | - = 65 69 73 77 81 85 . . .25
65 69 7.3 7.7 81 85 Position (m) ]
‘g Pasition (m) = 80 | ]
3 L ] -35
L d) e) Strain vs position c 40 | m
= g g | e
T :JUU 22 2 100 UMl B ool 1 4
ol M - |
Sla0ge ‘& MWW 40 : 55
200 = Il "_300. v 6 7 8 9 10 11 0 10 20 30 40
g - 58 62 66 7 74 7.8 i
58 62 66 7 74 78 Position (m) Acquisition time (s) Frequency (Hz)

Ul'liVCl'Sidad Position (m)

#8% de Alcala

IEEE IMS - 10/04/2024 51




6. Conclusions

= Adistributed optical fiber sensor (DOFS) is capable of measuring the spatial distribution of one
or more physical parameters (or measurands) at each and every point along a sensing fiber.

= Today, DOFS systems have gained widespread usage, primarily for real-time monitoring of the

& structural integrity of expansive civil infrastructures and the changes in environmental

Q
o3 < conditions.

c
-é z = Adistributed acoustic sensor (DAS) is a DOFS with a sampling rate in the acoustic regime.
o
% g = Recent developments in UAH target:
,,09 _§ = Linear DAS with steady (robust against fading noise) and ultra-high sensitivity along tens of kilometers
S S of fibers
=
§ = Ultra-high spatial resolution DAS with low-cost and low-power consumption scheme, covering a gap
-
g between state-of-the art DAS in the market.
o

= Analysis and adaptation of DAS for its use in novel areas of application
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