

Use of Inertial Measurement Units for short and long-term physical activity monitoring

Juan Jesús García Domínguez & Ana Jiménez Martín Department of Electronics, University of Alcalá (Alcalá de Henares, Madrid, Spain) 23rd April 2021 About us GEINTRA Research Group – US&RF

Research lines

- Indoor/outdoor Local Positioning Systems
 - US, Light, IMUs, WiFi, BLE
- SoC Architectures

Contract of the second se

Talk structure

Use of Inertial Measurement Units for short and long-term physical activity monitoring

Physical Activity Monitoring. Focusing on the elderly

Speaker: Juan Jesús García Domínguez

IMUs for Rehabilitation Monitoring Speaker: Ana Jiménez Martín

Introduction

- Growing interest in monitoring people
- Wearable devices are very popular
- Society is aging ...

Introduction

Frailty

Credit: Jennifer Fairman

Introduction

Frailty

Inertial Measurement Units, IMUs

- Provide inertial information
 - 3 accelerometers measuring "specific force" (m/s²) caused by motion and gravity
 - 3 gyroscopes measuring angular rate (rad/s)
 - Some incorporate a 3-axis magnetometer
 - Other sensors: barometer, WiFi, BLE

- Through inertial information
 - Positioning
 - Speed

How to work with IMUs

How to work with IMUs

Euler angle / information

If a person carries an IMU on the body, it is possible to detect steps or strides

Positioning Algorithms. Where to locate the IMU

Positioning - Step Length & Heading

 Most of commercial wearables include an IMU

- They can measure physical activity
 - But from a recreational point of view
- For frailty assessment
 - Accurate information
 - Data recording
 - Data access

Experimental approach

IMU sensors

- 3-axis accelerometer
- 3-axis gyroscope
- 3-axis magnetometer
- Barometer
- WiFi connectivity

Environment: nursing home

Short-term results: one day

Short-term results: one week

Long-term results: several weeks

Frail patient: 92-year-old

Long-term results: several months

Routine analysis: IMU / Barometer / WiFi fusion

Six days

Research environment

- Ultrasonic Beacons
- Map information

Smart Processing

• Mobile phone

Conclusions

Conclusions

Physical Activity Monitoring

This monitoring can be objectively carried out with positioning systems

Thanks Geintra

Inertial Measurement Units

Can provide information about movement and positioning

Frailty Common elderly illness, that can be mitigated through physical activity

IMUs for ehabilitation monitoring

Ana Jiménez Martín University of Alcala ana.jimenez@uah.es

Rehabilitation Introduction

Rehabilitation

Workd Life Expectancy

Active ageing

Training routines

Rise of health care costs

IMUs for rehabilitation monitoring

I. Biomechanical models

Joint angles are estimated from IMU velocity and acceleration data.

joint location

Respect IMU

length characterization

II. Machine Learning models

Identification of movement or assessment of whether it is right or wrong.

Biomechanical model

I. Biomechanical models

Overview

L,

Reference system.

Join location: Estimating the relative position of the IMU to the joint axes \rightarrow ArVed

Model.

下入

From the IMU position and the IMU measurements of angular velocity and acceleration, the joint angle is estimated.

Experimental setup

Reference system

Cameras and software for recording, processing and visualizing Motion Capture data.

ArVEd results

Biomechanical model

Flowchart

Biomechanical model

Results

Squats

CR S $\begin{bmatrix} x_n \end{bmatrix}$ $\forall_n \in \mathcal{N}_{to} \frac{\{x_n\}}{c}$ lim 1+ I naco $\frac{\chi_n}{\{y_n\}} = \{\chi_n, x_n, x_n\}$ n = 0 By $\lim_{n \to \infty} n = 1$ +Rx:p $n \ge n_0 \cdot (x_n) \left(\frac{n^2 \cdot n_{-1}}{n^2 - 2n \cdot 3} \right)$ X:p VneNxneyn<Zn 5" $c_y \circ c_x$ $N \to R$ -c) l_{max} { x_n }: $x_n = \frac{1}{n}$ $n \ge n_0 \cdot (x_n - g) < \varepsilon$ } yn f(x), f $x_n + y_n$ f(x) <=>]g E[0,1): Ux, x E X_ 13 × 13 n ${x_n} \sqrt{x_n} \sqrt{x_n} \sqrt{x_n} \sqrt{x_n}$ $(x_n - g) < \varepsilon n \ge n_0 \cdot (x_n - g) < \varepsilon$ lok. min lim min n [] n/13 n $\mathcal{X}_n: \mathcal{N} \to \mathcal{R}$ n $\frac{n+1}{n}$ $\{x_n\}$ $\leq \forall n \leq Zn$ 11, n→0

Machine Learning models

ML models

Overview

ML model approaches

Assessment (As)

[S. Garcia de Villa et al MeMeA 2021]

Identification (ID)

Train Test Output EXA EXB EXC

ID & As

ML model results

1

Assessment (As)

Identification (ID)

		Predicted											
		fes	sqt	haa	gai	Afes	Aele	Asqz					
Keal	fes	113	0	0	0	0	0	0					
	sqt	0	128	0	1	0	0	0					
	haa	0	0	123	0	0	0	0					
	gai	0	0	0	100	0	0	0					
	Afes	0	0	0	0	119	0	1					
	Aele	0	0	0	0	0	127	0					
	Asqz	0	0	0	0	0	0	128					

[S. Garcia de Villa et al MeMeA 2021]

ML model results

Identification & Assessment

accuracy

99,0%

sensitivity

84,1%

ID & As

	Predicted															
		<u>fesC</u>	<u>fesW</u>	<u>sqtC</u>	<u>sqtW</u>	<u>haaC</u>	<u>haaW</u>	<u>gaiC</u>	<u>gaiW</u>	<u>AfesC</u>	<u>AfesW</u>	<u>AeleC</u>	<u>AeleW</u>	<u>AsqzC</u>	<u>AsqzW</u>	
Real	fesC	84	0	0	0	0	0	0	0	0	0	0	0	0	0	
	fesW	0	82	0	0	0	0	0	0	0	0	0	0	0	0	
	sqtC	0	0	86	0	0	0	0	0	0	0	0	0	0	0	
	sqtW	0	0	0	89	0	0	0	0	0	0	2	0	0	0	
	haaC	0	0	0	0	88	0	0	0	0	0	0	0	0	0	
	haaW	0	0	0	0	0	77	0	0	0	0	0	0	0	0	
	gaiC	0	0	0	0	0	0	94	0	0	0	0	0	0	0	
	gaiW	4	0	0	0	0	0	0	60	0	0	0	0	0	0	4
	AfesC	0	3	0	0	0	0	0	0	54	0	0	0	0	0	
	AfesW	0	0	4	0	0	0	0	0	1	56	0	0	0	0	
	AeleC	0	0	0	2	0	0	0	0	0	0	59	0	0	0	
	AeleW	0	0	0	0	1	0	0	0	0	0	0	53	1	1	
	AsqzC	0	0	0	0	0	4	0	0	0	0	0	0	59	0	
	AsqzW	0	0	0	0	0	0	2	0	0	0	0	0	0	68	

diatad

Conclusions

machine learning models Identification and assessment.

biomechanical models

relative location of the centre of rotation and the IMU Kinematic constrains

IMUs

Inertial systems are a very attractive technological option for monitoring rehabilitation exercises.

Ana Jiménez Martín University of Alcala ana.jimenez@uah.es