Metal Organic Framework – A Novel Sorbent for a Greener World

David Kuo, PhD.

Exec. VP Engineering WaHa Inc.

David Kuo Executive VP Engineering, Waha Inc.

linkedin.com/in/david-kuo-b656a15

• 113 US and Worldwide Patents

Projected water stress around the world by 2030

While the BlackRock report focuses on the risk to REIT properties, virtually all industries will be affected by the rowing competition

Water Stress (low to high)

Source: BlackRock Investment Institute and BlackRock Sustainable Investing, with data from WRI, July 2020 Desalination Is the current solution, but, problems loom

Growing Problem: Scarcity and Quality

<u>Drivers</u>

Population Growth and Economic Growth

Challenges Sustainability and Resilience

- Compromised Supply
 - Dwindling sources
 - Groundwater over
 extraction
 - Aquifer depletion
 - Climate change
 - Contamination
- Delivery challenges
 - Aging infrastructure
 - Carbon footprint of transport

A Major Natural Resource

- 3,000,000,000,000,000,000 (three sextillion)
 Liters of water in the air at any one time
- I60 Countries import their water
- 1/3 of the world population has no access to clean water

Atmospheric Water Generation Depends on Weather Below 15g/m³, AWG Condensing Solutions Degrade or Fail Altogether

Performance of AWG Systems is Dependent on Absolute Humidity, which is Determined by the Relationship Between RH and Temp

Denotes Summer

Denotes Winter

Metal Organic Framework (MOF)

- Pioneered (1995) by Professor Omar Yaghi @ UC Berkeley
- Extreme Porosity: 50 % of volume is empty space
- Extreme Surface Area: 1 gram can cover a football field
- Can be designed to selectively capture water, hydrogen, natural gas, and carbon dioxide

Water capacity at 25 °C at RH of 25%

0.33 Liters per 1 kg of MOF-303

Energy Efficiency is also Sorbent Dependent

Where Q_{st} is the heat of adsorption, h_{fg} is the latent heat of vaporization of liquid water and A is the cumulative energy of sorbent-water interactions

The lower the A value, the lower is the energy of adsorption which in turn drives the energyefficiency of water harvesting systems

The lower the value of energy of adsorption the lower the required temperature of desorption, which in turn determines the coefficient of performance of water harvesting systems

MOF-303 provides WaHa with the highest coefficient of performance

MOF: Step Isotherm enables Energy Efficiency with a Heat Pump

🥪 aHa

• Zeolite

- Capable of adsorption at low RH, albeit not as much uptake as MOF
- However, adsorption energy is very high (2x of MOF), and it is difficult (and costly) to get water out
- Glycerol
 - As a liquid, has a fairly low surface to volume ratio, hence hard to get water in & out
 - Isotherm shows low uptake under ~50% humidity, hence not adequate in arid areas
- MOF-303

Exhibits ideal, Step function isotherm, with inflection near 15% RH and high adsorption capability

9

MulTiVariate (MTV) MOF

- More hydrophilic MOF-A makes more water per day albeit at higher energy cost
- More hydrophobic MOF-B makes less water per day at lower energy cost
- MTV-MOF-A/B makes as much water as needed at desired energy cost

Wide Variety of MOF's with Different Isotherm Steps

P/P_{sat}

"Mass transfer in atmospheric water harvesting systems", Thomas Lassitter a , Nikita Hanikel b , Dennis J. Coyle c , Mohammad I. Hossain a , Bryce Lipinski c , Michael O'Brien c , David B. Hall c, Jon Hastings a, Juan Borja c, Travis O'Neil c, S. Ephraim Neumann b, David R. Moore c, Omar M. Yaghi b, T. Grant Glover a,* Chemical Engineering Science Volume 285, 5 March 2024

Temperature Dependency of MOF Isotherms

Evolution of MOFs and WaHa

Adsorption and Desorption/Condensation

New Founding Team

Frank R. Ramirez, JD, MBA CEO & Board of Directors

Serial Entrepreneur Energy Storage, ClimateTech, Dental Pharma & Finance

Eugene Kapustin, PhD CTO

MOF Synthesis & Characterization, Performance Optimization 7 patents

David S. Kuo, PhD EVP, Engineering

Exp: Thermal Science Heat Transfer expert, Adv. Product Design, 110 Patents

Chris Kay COO

Serial Entrepreneur Med Device, Software, and Energy Storage, 5 patents

Stanford MBA UC Law School Serial Entrepreneur

Professor Yaghi's Protege MOF Expert Experienced RD/Product Lead Heat Mass Transfer Expert Serial Entrepreneur Business Development

Energy-Efficient System for Water Generation

5C, 25% RH FIG. 1 1.7 g /m3 esorption dsorption 1 COMPUTER/NETWORK 26 32 DESORPTION CHAMBER 9 10 11 0.50 11 -24a 0.45 4 SORBENT -29a -30a -31a MODULE - - -<u>27</u> - - -<u>28</u> 0.40 11 21 5 0.35 ⋓⋓⋓⋓⋓ 14 Water uptake / g g^{_1} 0.30 TRANSFER MECHANISM 22 0.25 8.8a.8b CONDENSATION CHAMBER 16 0.20 Ոսան 23 11 14 0.15 Zeolite 13X 29b -24b 30b Glycerol 0.10 316 **MOF-303** 0.05 ் WATER TANK <u>25</u> 0.00 0 10 20 30 40 50 60 70 80 90 100

Relative Humidity / %

Energy Efficient AWG System in Harsh Environment

- Install in the desert of West Texas
- 20-24 liters / day
- 0.45 0.69 kWh/kg (based on AH)

Dry Room Air Conditioning is the #1 Source of Energy Consumption in Li-ion Battery Manufacturing

Our Process Reduces Dry Room Air Conditioning Energy Consumption by 40-60%

Grain Drying

Freeze Drying @-20C

Water Purity Analyzed – Torrent Laboratory

	PQL	Value	MCL	Unit	Comments
Nickel	0.005	ND		mg/L	
Selenium	0.01	ND		mg/L	
Aluminum	0.1	ND		mg/L	
Iron	0.3	ND		mg/L	
Calcium	0.2	ND		mg/L	
Magnesium	20	ND		mg/L	
Potassium	0.02	ND		mg/L	
Sodium	20	ND		mg/L	
Manganese	2	ND		mg/L	
Arsenic	0.0005	0.00073	0.01	mg/L	Trace level near detection limit
Chromium	0.0005	ND		mg/L	
Lead	0.0005	ND		mg/L	
Copper	0.02	0.59	1.3	mg/L	Likely from Copper tubing

	PQL	Value	MCL	Unit	Comments
Calcium Hardness	1	ND		mg/L	
Total Hardness	1	ND		mg/L	
Nitrate	0.1	ND		mg/L	
Nitrite	0.1	0.15	1	mg/L	Trace level near detection limit
Total Dissolved Solids	10	12		mg/L	Range for tap water is 50-1000
Residual Chlorine	0.2	ND		ug/L	
Chloroform	0.5	ND		ug/L	
Bromoform	0.5	ND		ug/L	
BDCMethane	0.5	ND		ug/L	
DBCMethane	0.5	ND		ug/L	
рН	0.1	5.27		SU	Same as distilled water
Turbidity	0.2	0.33	5	NTU	Near detection limit
Total Coliforms		Absent		CFU/mL	
E. Coli	2	Absent		CFU/mL	

- Analysis by Torrent, EPA and NSF Certified
- Results better than guidelines
- pH level consistent with distilled water (dissolved CO₂). Can be raised (7.11) with mineralization
- This water gathered during a time of poor air quality in CA due to extensive fires
- Cu due to copper cooling coil easy to fix

Traction – Lots, but, only 1 Target Market

Long-term (regulatory, qualification, customer build cycle, technology development)

Medium-term (focus, partnerships)

Short-term (strong market fit, opportunistic, low technical risk)

Air Conditioning

Medical and Semi Pure Water

Military/Disaster Relief

Food Drying Atmospheric Water Generation

Low dew point dehumidification: Li-ion battery production

Markets – essentially same device for all markets

Market	TAM	Target Markets	Notes	Differentiators
Controlled Environment Agriculture (CEA)	\$1.4B \$.8B \$.5B	Dehumidification Supplemental Water CO2 Injection (later)	4 LOIs signed, 4 more in negotiations 1 offer to fund all development	Yield, Opex, Capex Opex, Sustainability Farm siting flexibility, Sustainability
Desiccant (where vapor- compression dehumidifiers do not work well)	\$2B	Low temperature (cold storage, ice rinks) Low dewpoint (Li-ion battery production) Storage rooms (pharma, silos) Coolers	Energy analysis verified by a large US HVAC company. 9x-64x improvement over their systems.	Opex Capex
Humidity management	TBD	Semiconductor fabs Data centers	Solution reviews w/2 largest fabs	Opex Humidity variance Sustainability
HVAC dehumidification / Humidity management / Indoor air quality	\$127-19 1B	Commercial Industrial Residential Automotive	Energy analysis verified by a large US HVAC company. 5.5 – 7x improvement over their systems.	Opex & Capex Sustainability Comfort Maintenance
Solar Panel Cleaning	\$1.3B	Generate water directly at solar farms for panel cleaning	Letter of support from robotic solar panel cleaning company	Panel productivity Opex & Capex
Ultrapure	\$5B	Semiconductor manufacturing Pharmaceutical manufacturing Energy production (green H2) Cosmetics	LOI from biotech company	Quality Capex & Opex Reliability Sustainability

WaHa Technology Addresses

- Water Scarcity
- Energy Savings for Dehumidification
- Low Energy Pure Water Generation

Q & A

