Self Healing Nano-Electronics for Nano-Spacecraft in Deep Space Missions

DONG-IL MOON

Center for Nanotechnology
NASA Ames Research Center
Outline

- Introduction
- Design of Sustainable Electronics
- Pristine Device
- Damage and Recovery
- Applications
- Conclusions
Voyager into Interstellar Space

Voyager spacecraft is exploring where nothing from Earth has flown before.

The NASA spacecraft, which rose from Earth on a September morning 40 years ago, has traveled farther than anyone, or anything, in history.

Source: www.nasa.gov
Interstellar Missions

But, Voyager will end around 2025 due to power shutdown.

Source: www.nasa.gov
Journey to Alpha Centauri

- Alpha Centauri
 - The nearest star from Sun (4.37 light years)
 - The fastest spaceship takes 18,000 years.
Spacecraft-on-a-Chip: nano-spacecraft

- Theoretical speed is one-fifth of light speed.
- Interstellar mission can be possible in 20 years.
Nano-Spacecraft Technology

CubeSat (Cal Poly, Stanford Univ.)
- Directed energy interstellar study (UCSB)
- Wafer-scaled spacecraft
- Propulsion for interstellar exploration

Source: www.nasa.gov

KickSat (Cornell Univ.)
- Gyroscope
- Magnetometer
- Solar cells
- Microcontroller
- Antenna
- Radio

Source: https://commons.wikimedia.org
Technological Issues

- Lifetime of COTS* chips ~ 10 years
 ➔ Deep space mission > 20 years
- Limited radiation hardening strategy
 ➔ No flight path control and radiation shielding

*COTS: commercial off-the-shelf
Current Status

On earth,
repairing or replacing components is available with low cost and short time.

In space,
a service center is not available. Therefore, new technology such as self-healing process is required, which greatly saves cost and time for deep space exploration.
Important Features of CMOS

On Earth
- Reliability
- Performance

In Space
- Reliability
- Performance

- Focus on performance
 - High performance (HP)
 - Low operating power (LOP)
 - Low standby power (LSTP)

- Focus on reliability
 - Single-event effect (SEE)
 - Total ionizing dose (TID)
 - Displacement damage

Degradation Mechanisms

- Sources of device degradation
 - Radiation: high energy particle
 - Operation: electric field

Trapped charges

Interface states
Example of Annealing/Baking

![Diagram showing the process of annealing and baking in semiconductor materials]

→ **Damage recovery by thermal annealing**
On-Chip High Temperature Annealing of PMOS Dosimeter

Figure 1. PMOS RADFET surrounded by a serpentine poly-silicon resistor, $R=200\Omega$.

A. Kelleher et al., RADECS 95
Radically Extending the Cycling Endurance of Flash Memory

H.-T. Lue et al., IEDM 2012
Sustainable Space Electronics

Nano-heater (gate)

Silicon nanowire
gate-all-around FET

Damaged → Fresh

Trapped charges
Interface states

Thermal annealing

Demonstration of highly reliable logic transistor, high-speed DRAM, and Flash memory
Outline

• Introduction

• Design of Sustainable Electronics
 – Silicon Nanowire Gate-All-Around FET
 – Built-in Nano-Heater

• Pristine Device
• Damage and Recovery
• Applications
• Conclusions
Gate-All-Around (GAA) FET

Inherent structural advantages for radiation and self-healing process
Process Flow

Bulk substrate

Suspended SiNW by one-step etching route
- Sacrificial oxidation
- Oxide dep. and CMP*
- Partial oxide etching (STI**) and CMP
- Thermal oxidation
- In-situ n⁺ poly-Si dep.
- Poly-Si CMP and HM*** dep.
- Dual pads gate patterning
- Spacer formation
- S/D implantation
- RTA**** and H₂ annealing

*CMP: chemical mechanical polishing, **STI: shallow trench isolation,
HM: hard mask, *RTA: rapid thermal annealing
Formation of Suspended SiNWs

- **Suspended SiNW**: basic building block for GAA FETs
- **Previous approaches**: SOI substrate and epitaxial growth
 - CMOS low-compatible, high cost, and low throughput
SiNW by One-Step Etching Route

Deep Si etching

Polymer

PR C_4F_8

Bulk-Si

PR SF_6

Bulk-Si

*PR: photo-resist

Anisotropic etching

Scallop

Isotropic etching

500 nm

10 μm

Anisotropic etching

Polymerization (passivation: C_4F_8)

Isotropic etching (SF_6)
SiNWs from a Bulk Substrate

CMOS compatible one-step etching route

D.-I. Moon et al., IEEE EDL 32 (4)
Highly scaled SiNW GAA FET on a bulk substrate
- Gate length \((L_G) = 30 \text{ nm}\), SiNW diameter \((D_{NW}) = 15 \text{ nm}\)
- Gate dielectric: thermal oxide, O/N/O stacks
Built-in Nano-Heater

Dual contact pads
Current ↑ →
Temperature ↑

Current heating
Gate
S
D

Current, I (mA)
0.0
0.3
0.6
0.9

Voltage, V (V)
0
1
2
3
4
5
6
7

Temperature (°C)
0
200
400
600
800
1000
1200
1400
1600

Breakdown
Healing
Measurement
Simulation
Electro-Thermal Simulation

Temperature by the nano-heater > 900 °C, 10 ns
Heat transfer from the gate to the dielectric
Outline

• Introduction
• Design of Sustainable Electronics

• Pristine Device
 – Electrical Characteristics
 – Short-Channel Effects

• Damage and Recovery
• Applications
• Conclusions
Electrical Characteristics

- Silicon nanowire gate-all-around FET on a bulk substrate
 - DIBL: 150 mV/V, SS: 87 mV/dec, $I_{ON}/I_{OFF} > 10^6$

D.-I. Moon et al., IEEE EDL 32 (4)
Short-Channel Effects (SCEs)

Excellent immunity against SCEs despite the device built on a bulk substrate → GAA structure with SiNW channel

D.-I. Moon et al., IEEE EDL 32 (4)
Outline

• Introduction
• Design of Sustainable Electronics
• Pristine Device

• Damage and Recovery
 – Radiation Aspect
 – Operation Aspect

• Applications
• Conclusions
Total Ionizing Dose (TID)

- **Semi-permanent device degradation** caused by radiation-induced fixed charge and interface trap

- **Representative phenomena**
 - Threshold voltage shift
 - Increment of subthreshold swing
 - Reduction in on/off current ratio

- **Accumulated damage according to cumulative radiation dose**

TID in SiNW GAA FETs

γ-ray by 60Co source
Dose rate = 460 rad/s

ΔV_T (mV)

ΔS_S (mV/dec)

L_G (nm)

30 50 70 90

Total dose = 5 Mrad
(SiO$_2$)

ΔS_S (mV/dec)

0 2 4 6

0 2 4 6 8 10

Total dose (Mrad)

L_G = 30 nm

V_T, S_S, and I_D degradation

$L_G \downarrow \Rightarrow$ TID effect \uparrow

Total dose $\uparrow \Rightarrow$ TID effect \uparrow
Recovery of TID Damages

Healing conditions: ± 2 V for 200 ms
Complete recovery of V_T, SS, and I_D
Single Event Effect (SEE)

- **Non-destructive malfunction (transient):** soft faults
 - Single-event upset (SEU)
 - Single-event transient (SET)
 - Single/multiple Bit Upsets (S/MBU)
 - Single-event functional interrupt (SEFI)

- **Destructive malfunction:** hard faults
 - Single-event upset (SEU)
 - Single-event burnout (SEB)
 - Single-event gate rupture (SEGR)

- **Hardening techniques**
 - Dual interlocked storage cell (circuit-level)
 - Error detection and correction (system-level)

Structural Dependence

Electron-hole pair generation by radiation
Number of gates $\uparrow \Rightarrow$ Leakage current \downarrow
SEE of SiNW GAA FET

Scaling: $D_{NW} \downarrow \Rightarrow$ SEE \downarrow vs. $L_G \downarrow \Rightarrow$ SEE \uparrow

Floating body of GAA \Rightarrow bipolar effect

*LET: linear energy transfer
Single Transistor Latch (STL)

Device degradation by latch

Removal of hot carrier stress by Joule heating
Outline

- Introduction
- Design of Sustainable Electronics
- Pristine Device

- Damage and Recovery
 - Radiation Aspect
 - Operation Aspect

- Applications
- Conclusions
Floating Body Cell (FBC)

Floating body as a charge storage

High-speed volatile memory (DRAM)
Reliability issue from the charge generation
Self-Healing in FBC

Iterative self-healing process:
10^{11} operations \rightarrow degradation \rightarrow annealing

✓ Endurance $> 10^{12}$ cycles & retention > 100 ms
Flash Memory

Program/erase stress on a tunneling layer
Increment of trapped charge/interface state
Self-Healing in Flash Memory

Iterative self-healing process:
1 P/E operation → annealing → no degradation

☑️ Endurance > 10^4 cycles & retention > 10 years
Word-Line Design

In memory array, a long word-line (WL) is required for high density. And many bit-lines are included in one WL.

Thermal distribution: non-uniform along the WL
- Center temp.: 900 °C
- Edge temp.: 300 °C
Thermally Uniform WL

Conventional

WL (Heat source) - Heat sink

Thermally isolated WL

Thermal bridge between heat source and sink
- Heat source (WL) → thermal island
- Uniform temperature regardless of a length of WL
All parts of logic and memory are not used at the same time!

On-the-fly thermal annealing
Idle state → aging check → recovery process
Data loss during the healing: copy to redundancy
Outline

• Introduction
• Design of Sustainable Electronics
• Pristine Device
• Damage and Recovery

• Applications

• Conclusions
High Reliability Applications

- **Space**
 - Image: Texas Instruments

- **Military**
 - Image: Texas Instruments

- **Transportation**
 - Image: Texas Instruments

- **Automobile**
 - Image: Tesla

- **Medical equipment**
 - Image: Intuitive Surgical Systems

- **Server and network**
 - Image: Google
Outline

• Introduction
• Design of Sustainable Electronics
• Pristine Device
• Damage and Recovery
• Applications

• Conclusions
Conclusions

- The temperature arising from Joule heat by the gate was applied for the on-the-fly self-healing process.

- The lifetime of devices can be extended, which opens an opportunity for nano-spacecraft to sustain more than 20 years of deep space exploration.
Acknowledgment

• Prof. Yang-Kyu Choi’s group
 School of EE, KAIST

• Prof. Hee Chul Lee’s group
 School of EE, KAIST

• National NanoFab Center, Korea
By far, R&D activities across in industry, academia, and government have focused on “How to improve endurance against the radiation.”

But, this project is “How to recover and self-heal to healthy condition” as human immune systems.

Thank you for your attention.