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Data sources: AMD, Koomey et al. (2011)

50 years of Moore’s law, “how about energy?”

Ethan C. Ahn 2015. 09. 15.
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“Technology node transitions (volume production)”

Ethan C. Ahn 2015. 09. 15.

Slowing below 32 nm

?
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“What’s the difference?”

vs.

$ 299 $ 399
Ethan C. Ahn 2015. 09. 15.
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vs.

16 GB 64 GB
Ethan C. Ahn 2015. 09. 15.

“Adding more NAND”

(DRAM + NAND) (DRAM + MORE NAND)



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong6

Emerging non-volatile memory (NVM)
; sub-10 nm scalability & low cost (<0.1$/GB)

3D DRAM (TSV)

SK Hynix, 2013 (product) Toshiba, 2009
(32 Gb-chip prototype)

3D NAND
- Tohiba (BiCS)
- Sandisk (BiCS)
- Samsung (TCAT)
- SK-Hynix
- Micron
- …

“Fundamental solution”

“New tricks to further increase density”

Ethan C. Ahn 2015. 09. 15.
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More than 50% power
consumed by memory

Ref: ITRS 2011 Edition (System Drivers)

Memory: Limiting factor for energy-efficient system

Memory Static Power

(Consumer Portable Chips)

Ethan C. Ahn 2015. 09. 15.
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“New” Players in NVM
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current

Random access, non-volatile, no erase before write

Ethan C. Ahn 2015. 09. 15.
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Nothing faster
than STT-MRAM
Nothing faster
than STT-MRAM

Speed limited
by physics
Speed limited
by physics

Energy vs Speed Trade-Off @ Device Level

Wong and Ahn et al. “Stanford Memory Trends”, https://nano.stanford.edu

Ethan C. Ahn 2015. 09. 15.
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1. Energy-efficient Cell design

2. Energy-efficient Architecture design
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PCM
: Phase-change memory (PRAM/PCRAM)

HDD
NAND/NOR

DRAM
SRAM
CPU

volatile
working
memory

nonvolatile
(storage)

Speed

Density
(Cost)

Phase-Change Memory (PCM)

Packaged MCP that includes 512 Mb PCM
(NOR-compatible, Samsung, 2010)

Ethan C. Ahn 2015. 09. 15.
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PCM at a glance: Based on Joule-heating

Poly-CrystallineAmorphous

High Resistivity Low Resistivity

Annealing
(Crystallization/SET)

Melt-quenched
(Amorphization/RESET)

‘0’ State ‘1’ State

Time

Tmelt

Tcrys

Read

SET pulse

RESET pulse

Troom

Programming region
(amorphous)

Oxide isolation
Bottom Electrode

Top Electrode

Phase-change material
(GeSbTe, etc.)

Ethan C. Ahn 2015. 09. 15.
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PCM: Key challenges and issues

 Physics of threshold switching, crystallization, etc.
 High write latency (due to long crystallization time)
 Cost-effective array architecture
 High programming (RESET) current
 Resistance drift (difficulty in MLC)
 Cross-talk (thermal disturbance)
 etc.

Ethan C. Ahn 2015. 09. 15.



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong14
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“How hot is Ge2Sb2Te5?” Melt
(RESET)

Crystallize
(SET)

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Materials Engineering
Example:
Recent studies with GeTe/Sb2Te3 super-lattice structure

IPCM (Interfacial PCM)
(R.E. Simpson, Nature Nanotech. 6, 2011)

Charge-injection
Super-lattice PCM
(N. Takaura, VLSI 2013)

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Generated heat

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal
(at the bottom)

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal
(at the bottom)

Q5

Q5

Diffused into surrounding
GST (crystalline)

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal
(at the bottom)

Q5

Q5

Diffused into surrounding
GST (crystalline)

Q6

Q6

Flows into the metal
(at the top)

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

Q1

Q2Q3
Q4

Q5

Q6
Percentiles (%)

Q4
: 60-72%

Q3
: 21-25%

Q5 + Q6
: 3-17%

“Only a very small fraction (< 1 %)
of the generated heat is actually
used in the active region”

Q2: 0.2%

Q1 S. M. Sadeghipour et al., ITHERM 2006

Ethan C. Ahn 2015. 09. 15.



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong26

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

“Only a very small fraction (< 1 %)
of the generated heat is actually
used in the active region”

“WO3 (130 nm)
(k ~ 1.6 W/mK)”

F. Rao, Nanotech. 19, 2008

Ethan C. Ahn 2015. 09. 15.
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Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESET
in a typical mushroom PCM cell

Programming region
(amorphous)

Oxide
Bottom Electrode
(heater plug)

Top Electrode

GST

“Only a very small fraction (< 1 %)
of the generated heat is actually
used in the active region”

“C60 (fullerene)
(k ~ 0.4 W/mK)”

C. Kim, APL 92 2008

Ethan C. Ahn 2015. 09. 15.
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“How about graphene?”
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“In-plane” “Out-of-plane”

The Janus faces of graphene

Ethan C. Ahn 2015. 09. 15.

See references
[1] Pop et al. MRS Bull. 2012
[2] Guzman et al. ITherm. 2014
[3] Koh et al. Nano Lett. 2010
[4] Mak et al. APL 2010
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Graphene as a thermal barrier: TDTR measurements

Q1: Is a single-layer graphene good as a thermal barrier?
(Is a single-layer graphene thermally-resistive well enough?)
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“TDTR (Time Domain ThermoReflectance)”

Slower thermal decay with SLG

Larger Thermal Boundary Resistance

A1: YES

Ethan C. Ahn 2015. 09. 15.

Ahn et al. Nano Letters 2015
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Graphene as a thermal barrier: TDTR measurements

Q1: Is a single-layer graphene good as a thermal barrier?
(Is a single-layer graphene thermally-resistive well enough?)
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“TDTR (Time Domain ThermoReflectance)”

Slower thermal decay with SLG

Larger Thermal Boundary Resistance

A1: YES

ΔTBR (m2K/GW)
= 32 +/- 10 for as-dep. GST

44 +/- 3 for crystalline GST

Q2: HOW LARGE?
A2:

Ethan C. Ahn 2015. 09. 15.

Ahn et al. Nano Letters 2015
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GST (10 nm)
Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Device structure

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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GST (10 nm)
Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Device structure

Active device region Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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GST (10 nm)
Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Raman & TEM studies

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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G-PCM: IRESET of traditional PCM
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Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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G-PCM: IRESET of GPCM (B) – Optimal design

“G-PCM (B)”
Heater (W plug)

SiO2

T.E.

B.E.

wSLG

c-GST

a-GST
SLG

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.
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G-PCM: Verifying endurance is of great importance
“Programming endurance” “Resistance distribution”
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Ethan C. Ahn 2015. 09. 15.
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1. Energy-efficient Cell design

2. Energy-efficient Architecture design



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong40

RRAM
: Resistive (switching) RAM or Metal-oxide RAM

Panasonic, 2013
(Embedded)

Crossbar, 2014

HDD
NAND/NOR

DRAM
SRAM
CPU

volatile
working
memory

nonvolatile
(storage)

Speed

Density
(Cost)

RRAM

Ethan C. Ahn 2015. 09. 15.
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RRAM: Emerging candidate for sub-10 nm NVM
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Year P. Wong, Proc. IEEE, 2012

HfOx, AlOx,
TaOx, ZnO,
etc.

“Simple device structure”

“I-V (hysteresis)”

Ethan C. Ahn 2015. 09. 15.
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RRAM: Emerging candidate for sub-10 nm NVM
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“Less than 10 X 10 nm2 RRAM”

B. Govoreanu et al. (IMEC),
IEDM 2011

Stanford (2013)

Z. Zhang, EDL 34 2013

W. Yi, IEDM 2013

Ethan C. Ahn 2015. 09. 15.
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RRAM: Key attributes (electrical performance)
 High endurance (> 1012 cycles) with MLC  High speed (< 1 ns)

H. Y. Lee, IEDM 2010

 Low programming voltage, current, and power
Estimated power:
< 100 nW (10 fJ per bit)

C.-L. Tsai, ACS Nano 7, 2013

 CMOS compatible
 Low temperature
 High degree of freedom

(engineering design)
 …

C.-W. Hsu, VLSI 2013

W. Kim, VLSI 2011

Ethan C. Ahn 2015. 09. 15.
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RRAM: Key challenges and issues

 Physics of resistive switching and conduction
 Array architecture
 Killer application

Ethan C. Ahn 2015. 09. 15.
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RRAM: Key challenges and issues

 Physics of resistive switching and conduction
 Array architecture
 Killer application

Ethan C. Ahn 2015. 09. 15.



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong46

July 2015
Ethan C. Ahn 2015. 09. 15.
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July 2015
Ethan C. Ahn 2015. 09. 15.

3D X-point
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RRAM array: Cross-point structure

“attractive,” due to
 Easy to fabricate
 Small cell size: 4F2

 Potential for 3D stacking
(4F2/N, N = number of layers)

(WLs)

(BLs)

2F

2F

Ethan C. Ahn 2015. 09. 15.
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RRAM array: Cross-point structure

“attractive,” due to
 Easy to fabricate
 Small cell size: 4F2

 Potential for 3D stacking
(4F2/N, N = number of layers)

“problematic,” due to
 Sneak path problem
- Increased power consumption
- Reduced write/read margin
(limiting maximum allowable
array size)

2F

2F

(WLs)

(BLs)

Ethan C. Ahn 2015. 09. 15.
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RRAM array: Cross-point structure

“attractive,” due to
 East to fabricate
 Small cell size: 4F2

 Potential for 3D stacking
(4F2/N, N = number of layers)

“problematic,” due to
 Sneak path problem
- Increased power consumption
- Reduced write/read margin
(limiting maximum allowable
array size)

2F

2F

We need “Selection Device”
to cut-off sneak leakage current

(WLs)

(BLs)

Ethan C. Ahn 2015. 09. 15.
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“What selector will be the best choice for you?”

Ethan C. Ahn 2015. 09. 15.
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Carbon nanotube field-effect transistors (CNFETs)

Schematic representation of CNFET

Ethan C. Ahn 2015. 09. 15.
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Carbon nanotube field-effect transistors (CNFETs)

Schematic representation of CNFET

Rolling up a sheet of graphene

Ref: J. Wilder et al, Nature 391, 1998

Ethan C. Ahn 2015. 09. 15.



Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong54

Carbon nanotube field-effect transistors (CNFETs)

Ref: J. Wilder et al, Nature 391, 1998

Schematic representation of CNFET

Rolling up a sheet of graphene

“Why CNTs to replace Si?”
Ballistic
transport

Ultra-thin
body

Higher on-current
Lower operating voltage

Aggressive scaling
Excellent electrostatic control

Ethan C. Ahn 2015. 09. 15.
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 High forward-current (Ion) densities (Jon)
to program aggressively scaled memory device
Jon > 10 MA/cm2

 High On/off ratio (Ion/Ioff)
to have high selectivity of memory bits
Ion/Ioff > 106

 Low off-current (Ioff)
to accommodate un- and half-selected cells
Ioff < 10 pA

 Low processing temperature (T)
to allow 3D stacking
T < 300 °C

 Bipolar operation
to allow for best-of-breed RRAM
Symmetric I-V at both polarities

+ “small device area”

CNFET: Ideal selection device for memory array

Ethan C. Ahn 2015. 09. 15.
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1TnR array: Based on CNFET selection device

*R.S.L. (Resistive Switching Layer)
- Metal-oxide for RRAM
- Phase-change material for PCMAhn et al. VLSI 2014

Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.
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1TnR array: Reduced sneak leakage

“Sneak leakage is much reduced from 2D to 1D,”
as it is confined within the 1D CNT channel

“selected WL”

Ethan C. Ahn 2015. 09. 15.
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1TnR: (1) Requires NO additional contacts/wiring

“CNFET selector is tightly integrated, with CNT as B.E.”
Ahn et al. VLSI 2014
Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.
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1TnR: (2) Rectangular array preferred

Ahn et al. VLSI 2014
Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.
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Electrical results: IVs of fabricated CNFETs

High current-drive (> 20 MA/cm2)
Good electrostatic control by gate
Near-symmetric I-V (bipolar)

High on/off ratio (105 ~ 107)
Low leakage current < 10 pA
(even at high Vd)

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015
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Integration: CNFET + Memory = 1TnR
“Integrating with Al2O3-based RRAM”

“Integrating with PCM (GST)”

Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.
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Electrical results: 1TnR RRAM – Selective switching
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“n = 1 cell is NOT selected”
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 The cell is not programmable, as the voltage
mostly drops across more-resistive CNFET

CNFET: OFF

Electrical results: 1TnR RRAM – Selective switching
(DC)

(VWL = + 2V)

“n = 2 cell is NOT selected”
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Electrical results: 1TnR RRAM – Selective switching
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(VWL = - 5V)

“n = 3 cell is selected”
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“CNFET: ON”

Electrical results: 1TnR RRAM – Selective switching
(DC)
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Electrical results: 1TnR RRAM – Selective switching
(DC)
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Semiconducting CNT

GND

I-
VBL = Vdd

VWL
= Vdd (ON)

Gate oxide
E-field

Resistive-switching layer
(Oxide), HRS -> LRS

Critical roles of CNTs

“selected cell case”

I+

RRAM CNT

~Vdd

>>

Ethan C. Ahn 2015. 09. 15.
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Critical dimension: < 5 nm2

Ethan C. Ahn 2015. 09. 15.

Ref: F. Xiong et al, Nano Letters 13, 2013

“PCM reset current scales with
the effective contact area”
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Critical dimension: < 5 nm2

Ethan C. Ahn 2015. 09. 15.

Ref: F. Xiong et al, Nano Letters 13, 2013

“Sub-1 µA RESET current PCM
integrated into the 1TnR array”

(=CNT)

This work (Ahn 2015)

1TnR PCM

Ahn et al. IEEE TED 2015
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Electrical results: 1TnR RRAM – Pulsed endurance

Al2O3 RRAM Low programming power Size of CF: small

(1)

(0)

Wong, Proc. IEEE, 2012

oxygen ion
oxygen vacancy

Ahn et al. IEEE TED 2015
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Energy-efficient
NVM design

Cell

Graphene-PCM, Low-power PCM
Ahn et al. Nano Letters, in press, 2015
(DOI: 10.1021/acs.nanolett.5b02661)

1TnR X-point array, 1D selector
Ahn et al. IEEE TED 62, 2197, 2015

Architecture

“Summary”

Ethan C. Ahn 2015. 09. 15.
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Wearable tech gets stylish (Apple, Aug. 2014)

Graphene/CNT
interconnects?

All-spin low power
microchip?
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“Just imagine”

Wearable tech gets stylish (Apple, Aug. 2014)

Graphene/CNT
interconnects?

All-spin low power
microchip?

RRAM-based
storage device?


