RRAM Architectures and Circuits at Nanoscale

Sangho Shin, and Sung Mo “Steve” Kang

Dept. of EE, UCSC

April 6, 2012
Outline of This Talk

I Introduction
II RRAM Architectures and Models
III Complementary RRAMs
IV Summary
Memristors and Memristive Electronics

• Circuit Theoretic and Design Research
 – Memristive nonlinear dynamics
 – Compact device modeling
 – Low Power Systems Design

• Nanoelectronics- Memristive Systems
 – Ultra-dense nonvolatile memories
 – Stateful Boolean logic and resistive nanocomputing
 – Self-reconfigurable circuits and systems
 – Neuromorphic synaptic circuits and systems, memory-intensive systems for bioinformatics and other applications
Nonvolatile Resistive Memory

• Nanotechnology Enables Ultra-Dense Memory

Early memory based on p-Si/a-Si/Ag by Univ. of Michigan

Resistive Random Access Memory (RRAM)

• Key factors of importance
 – Physical Geometry
 – Process/Thermal Reliability
 – Embedding Compatibility into CMOS
 – Forming or formingless
 – 3D Stackability

• Challenges for Memory Devices
 – Number of Storage Bits/Device
 – Retention > 10 years
 – Endurance > 10^{17}
 – Read/Write Energy < 1fJ/bit
 – Read/Write Speed < 1ns
I. Introduction

II. RRAM Architectures and Models

III. Complementary RRAMs

IV. Summary
Issues on RRAMs

- **Technology issues**
 - Reliable device process (Variability)
 - Multi-layer memory integration

- **Circuit issues**
 - Power consumption for Write/Read operations
 - Performance degradation by “Sneak currents”
 - “Data-pattern” sensitive power & read performance
How to deal with “Sneak Currents”?

With selection devices (e.g., 1T1R or 1D1R)

Trading-off with power (\(0 \leq v_X < v_R\))

Forced bit-line voltages (e.g., TIA type)

<table>
<thead>
<tr>
<th>Performance</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing margin</td>
<td>Large</td>
<td>Narrow</td>
<td>Large</td>
</tr>
<tr>
<td>Speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Power</td>
<td>Low</td>
<td>Moderate ~ High</td>
<td>Low</td>
</tr>
<tr>
<td>2D capacity</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>3D stackability</td>
<td>Challenging</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Sensing Behaviors of RRAMs

- Passive RRAM with Resistor Terminations
 - Sensing performance is highly dependent on the stored “Data-pattern”, due to “Sneak Currents”
 - The more low-resistance cells lead to the lower sensing margin

![Diagram of RRAM sensing](image)

Data-pattern sensitive Read performance (128x128 array)
• Analysis and Estimation of RRAM Performance \((m \times n\) array)
 - Full node analysis needs to solve for
 \[
 \left(g_S + \sum_{i \in I_U} g_{ij}\right) \cdot v_{S(k),j} = g_{k,j} \cdot v_R + \sum_{i \in I_k} \sum_{y \in I_j} g_{iy} \sum_{u \in I_U} \left(g_{iu} \cdot v_{S(k),u}\right)
 \]
 for \(j = 1, 2, \ldots, m\)
 - A worst case equivalent model has been reported in 1969.
 - Computation efficient statistical model for analysis of data- and variability-dependency
 - Sub-grouping for modeling
 • \(G_I\) : cell to be read \((k, l)\)
 • \(G_{II}\) : cells in reading row
 • \(G_{III}\) : cells in reading column
 • \(G_{IV}\) : all the others
2x2 Equivalent Memory Model

\[
\begin{bmatrix}
(g_{e.S} + \varepsilon_{e.S}) + g_{e.IV} + g_{e.II} & 0 \\
0 & g_S + g_{e.III} + g_{kI}
\end{bmatrix}
\begin{bmatrix}
\bar{v}_{S(k)} \\
v_{S(k),l}
\end{bmatrix}
= \begin{bmatrix}
g_{e.II} \\
g_{kI}
\end{bmatrix}
\cdot v_R + \frac{1}{g_{e.IV} + g_{e.III}}
\begin{bmatrix}
g_{e.IV} & g_{e.IV} & g_{e.IV} & g_{e.III} \\
g_{e.III} & g_{e.IV} & g_{e.III} & g_{e.III}
\end{bmatrix}
\begin{bmatrix}
\bar{v}_{S(k)} \\
v_{S(k),l}
\end{bmatrix}
\]

\[
V_{S(k)} = \left[G_P - C_{X(k)}\right]^{-1} \cdot G_{a(k)} \cdot v_R
\]

- 2×2 equivalent model for \(n \times m\) RRAM array
 - Each group is represented in a single equivalent admittance
 - Capable of flexible analysis and ease of simulation

\[\varepsilon_{e.S} = (m-1)\varepsilon_{II}\]
\[g_{e.S} = (m-1)g_S\]
\[g_{e.II} = (m-1)\bar{g}_{II}\]
\[g_{e.III} = (n-1)\bar{g}_{X}\]
\[g_{e.IV} = (m-1)(n-1)\bar{g}_{IV}\]

To be analyzed
2×2 Model Results

- Example for 128×128 array
 - Conditions: \(\alpha = R_{OFF}/R_{ON} = 10^3 \), \((R_{OFF} = 10 \, \text{M}\Omega, \, R_{ON} = 10 \, \text{k}\Omega)\)
 - Data-pattern dependent \(\beta (=R_{OFF}/R_S) \) is desirable

Symbols: \(n \times m \) simulation
Lines: 2×2 model

(a) Detection margin
(b) Average cell current
Array Size Dependency

- **Optimal** R_S ($R_{S,\text{opt}}$)
 - Generally required to be small for large array sizes
 - Sensitive to data-pattern

- **Detection margin** (Δv_S)
 - Decreases with array size
 - Sensitive to data-pattern
 - For 1% margin, n & $m < 128$
Data-Pattern Dependency

- Highly sensitive performance to data-pattern
 - β_{opt}/α is approximately linear to data probability
 - Data dependent optimum β-ratio ($\beta_{opt}=R_{OFF}/R_{S,opt}$) is desirable

- α-ratio ($=R_{OFF}/R_{ON}$) dependency
 - Generally good for larger α-ratios (rapidly desensitized as $\alpha > 10^2$)

![Graph showing data-pattern dependency]
Data-Dependent Adaptable $R_{S,\text{opt}}$

- Adaptable g_S configuration
 - Composed of grounded replica rows and fixed resistance rows.
 - x # of replica rows
 - y # of g_{OFF} rows
 - Expected value of g_S
 \[
 x = \frac{\Delta \beta_{\text{opt}}}{\alpha - 1} \approx \frac{\Delta \beta_{\text{opt}}}{\alpha}, \text{ and } y = (\beta_{\text{opt}, \min} - x)
 \]
 \[
 \Rightarrow \bar{\beta} = x(\alpha - 1)p_1 + (x + y) \approx \beta_{\text{opt}}
 \]
 - Adaptable $R_{S,\text{opt}}$ leads to both low-power and large detection margin.
Adaptable $R_{S,opt}$ Example

- 128×128 RRAM array
 - $R_{ON} = 10k\Omega$, $R_{OFF} = 10M\Omega$ ($\alpha = 10^3$)
 - R_S constructions by
 - Reconnecting a part of unread RRAM ($x=5$)
 - Dedicated R_{OFF} rows ($y=35$)

![Diagram showing RRAM array and calculations](image)
Worst Case vs. Self-adaptable

- **Worst case design**
 - Constant β_{opt}/α that made for the worst case data pattern
 - The worst case appears with all stored data of “1”s
 - Excess current consumption and reduced detection margin for non-worst cases

- **Self-adaptable design**
 - Adaptable β_{opt}/α that made for every data pattern
 - For every data pattern, it provides maximally available detection margin
 - Current consumption can be saved for general non-worst cases.
Performance Comparison

- **Worst case vs. self-adaptable design**
 - Self-adaptable design shows the larger Δv_S and low $I_{cell,av}$ simultaneously, compared to the worst-case design
 - Especially for low probability cases

![Graphs showing detection margin and average cell current comparisons between worst-case and self-adaptable designs.]

Average improvement:
+ 46% for Δv_S increment
+ 14% current reduction
Complementary Memory Cell

- Complementarily written two devices cell (CR-cell)
 - Provides data-dependent equivalent sense resistance \(R_{S,eq} \)

<table>
<thead>
<tr>
<th>Readout circuit configuration</th>
<th>1R-cell</th>
<th>CR-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense resistance</td>
<td>(R_{S,opt} = R_{OFF} / \sqrt{\alpha})</td>
<td>></td>
</tr>
<tr>
<td>Normalized detection margin</td>
<td>(\Delta V_{S,1R} = \left(\frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1} \right))</td>
<td>></td>
</tr>
<tr>
<td>Normalized average current</td>
<td>(I_{S,1R} = g_{OFF} \cdot \frac{\sqrt{\alpha}}{2})</td>
<td>></td>
</tr>
</tbody>
</table>
Array Properties of CR-cell Array

• **Features**
 – Lower design complexity
 • With no optimization process on R_S
 – Data-dependent equivalent R_S
 – Reduced effective density
 – Doubled number of sneak paths by complementary devices

• **Data-pattern dependency**
 – Constant detection margin
 • With larger window
 – Regulated readout currents
 • With smaller values

2x2 array of CR-cell memories
$n \times m$ Dimensional CR-cell Array

- **Bit-line data buffers, Mode switches**
- **Word-line decoder, Mode switches**
- **Mode switches, Sense Amplifiers**
- **Reference generators**

Diagram Details:
- *Reading row (Group-A)*
- *Non-reading memory rows (Group-B)*
- *Complementary of Group-B (Group-C)*
- *Complementary of Group-A (Group-D)*

- **Word-line decoder, Mode switches**
- **Bit-line data buffers, Mode switches**
- **Reference generators**

- **Mode switches, Sense Amplifiers**
- **Reference generators**

- **v_R**
- **v_S**
- **V_{REF}**
Write-Mode Configuration

- 2-Step ‘WORD-wise’ Writing
 - Step-1: RESET for all devices of a selected word line
 - Step-2: SET for selected bit devices (other devices are halfway selected)
Read-Mode Configuration

• ‘WORD-wise’ READ
 – Comparison V_S with V_{REF}

• Reference generation
 – Desirable to be data-dependent
 – Finding median V_S by dedicated R_{OFF} & R_{ON} columns

\[V_{REF} = \left(V_{REF.H} + V_{REF.L} \right) / 2 \]

– Each REF cell has complementary devices ($p_{III} = 0.5$)
– Reference buffer isolates capacitances of SAs
Performance Comparison (I)

- **Array size dependency**
 - Optimally designed 1R-cell array vs. CR-cell array
 - CR-cell memory is capable of ~4x larger size

![Graphs showing performance comparison between 1R-cell and CR-cell RRAM]

- Data-pattern independent detection performance
Performance Comparison (II)

- **Data-pattern Dependency**
 - Optimally designed 1R-cell array vs. CR-cell array
 - Lower current consumption for all cases
 - Data-independent detection performance

Symbols: CR-cells array
Thin lines: 1R-cells array

Voltage Detection Window
Sensing Current
Variability Effect on Read Performance

• For a 128x128 array:
 – Resistances: log-N dist. w/i $\sigma = 20\%$
 – $R_{\text{ON},0} = 10k\Omega$, $R_{\text{OFF},0} = 10M\Omega$
 – Array size=128x128
 – REF sections for every 8-bits

![Graph showing data-dependent V_{REF} and V_{S}](image-url)
I Introduction

II RRAM Architectures and Models

III Complementary RRAMs

IV Summary
• Computation efficient RRAM model
 – Data-dependent 2x2 equivalent circuit model
 – Provides optimal design parameters for any random data

• Complementarily written RRAM cell (CR-cell) has been presented
 – Data-pattern independent sensing performance
 – Larger voltage sensing window, Regulated lower sensing current
References