A Map for Phase-Change Materials

Invited talk at the IEEE Nano Symposium on "Emerging Non-volatile Memory Technologies" in Santa Clara, CA, USA

> April, 6th 2012 Martin Salinga

Why are people interested in phase change materials?

Application in memory devices

PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MA

Unique physics

- (meta-)stable in amorphous <u>and</u> crystalline state
- very fast phase transitions
- strong property contrast between both states
- unusual electronic behavior

Switching principle of phase change materials

3

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Relevant scientific questions

Why is there such a strong property contrast between amorphous and crystalline phase?

 \Rightarrow physics of bonding

How does the electronic excitation of the material work?

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEI

⇒ electronic properties >

Overview

Introduction

Part 1: Crystallization kinetics

- Viscosity and glass formation
- Crystallization speed
- Distinction between nucleation and growth

Part 2: Physics of bonding

Part 3: Compositional trends

Part 4: Electronic behavior

- System minimizes Gibbs free enthalpy in equilibrium
- Crystallization is not favorable above T_m
- Crystalline state is favored below T_m
- $\Delta G_{\rm V}$ is driving force

However, the system is hindered from following the thermodynamic driving force by a limited atomic mobility. (Locally there must be an activation barrier, otherwise it would just crystallize immediately)

PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MA

How is a glass formed?

How does this influence crystallization?

temperature \uparrow = viscosity \downarrow = atomic mobility \uparrow = crystallization rate6/IV/2012M. SalingaIEEE Nano Symposium 20127

(SIKALISCHES INSTITUT (IA) : PHYSIK

Crystallization – a kinetic process

Connection between crystallization speed and viscosity

M. Wuttig and M. Salinga, Nature Materials 11, 270–271 (2012); M. Salinga, PhD thesis RWTH Aachen (2008)

Fragility

Using ultra-fast calorimetry Greer et al. found a strong deviation from Arrhenius behavior in $Ge_2Sb_2Te_5$ at high temperatures:

High fragility => pronounced increase of crystallization speed above glass transition temperature

PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATE

6/IV/2012

Measuring fast crystallization by laser heating

M. Salinga PhD Thesis, RWTH Aachen (2008)

PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Transmission Electron Microscopy on Ge₂Sb₂Te₅: evidence for formation of multiple crystallites in one laser spot

Consider interfacial energy!

6/IV/2012 M. Salinga IEEE Nano Symposium 2012

12

PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Nucleation and growth: AgInSbTe

J. Kalb, PhD Thesis, RWTH Aachen (2006)

5 min

7 min

9 min

AFM scans on AgIn-Sb2Te: Crystals (dark) are visible in amorphous surrounding (bright).

Dimensions: 3 μ m by 3 μ m. Anneal temperature: 160°C (DSC furnace). Film thickness: 30 nm.

Direct measurement of growth velocity and nucleation rate at a certain temperature

Why is it important to be aware of nucleation and growth?

How long does it take to crystallize a certain volume?

How does it crystallize?

=> It depends on the material.

Often materials with high nucleation rates were chosen for faster crystallization.

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Why is it important to be aware of nucleation and growth?

$2.3 \pm 0.7 \text{ M}\Omega$ $4.2 \pm 0.5 \text{ M}\Omega$ $5.2 \pm 0.7 \text{ M}\Omega$ $6.2 \pm 1.0 \text{ M}\Omega$ 10⁷ 0.1 D Crurent in mA 8.0 C 0.4 O 10⁶ Ц **Reduction of** switching time by .⊆ 0 reduction of Resistance 2.2 10⁵ Voltage in V 0.1 0.1 0 0 0 amorphous volume ...as expected for growth dominated **10⁴** crystallization 0.6 16 64 16 64 4 64 6 64 4 16 4 4 Top electrode Pulse Length in ns current $\mathbf{0}$ Extremely fast switching speeds! In the range of DRAM, SiO₂ but non-volatile! voltage Bottom electrode

Crystallization kinetics in electronic memory

G. Bruns et al., Applied Physics Letters 95, 043108 (2009)

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATER

M. Salinga **IEEE Nano Symposium 2012** 6/IV/2012

Reduction of energy per switching event

PHYSIKALISCHES INSTITUT (IA) · PHYSIK NELLER MATE

Electrical pulses shorter and with lower amplitude => lower energy consumption

Overview

Introduction

- Part 1: Crystallization kinetics
 - Viscosity and glass formation
 - Crystallization speed
 - Distinction between nucleation and growth

Part 2: Physics of bonding

Part 3: Compositional trends

Part 4: Electronic behavior

Measurement of FTIR reflectance

I PHYSIKAI ISCHES INSTITUT (IA) · PHYSIK NELIER MATE

Modeling dielectric function

'Resonance bonding' in the crystalline phase

K. Shportko et al., Nature Materials 7, 653-658 (Aug. 2008)

- with $N_{sp} \sim 5$ resp. $N_p \sim 3$
- octahedral coordination ~ 6 bonds
- covalent bonding,

but unsaturated bonds

- prototype: GeTe

- Strong coupling between phonons and electronic states
- \rightarrow Large Born effetive charges Z_{T}
- \rightarrow Large value of dielectric constant $\varepsilon_{\!\scriptscriptstyle\infty}$

resonant bonding relies on long-range order, only feasible for crystalline phase \rightarrow contrast

Resonance bonding (delocalized bonds)

- = groundstate ψ (unsaturated bonds) is superposition
- of saturated bond-configurations Φ_{x}

groundstate ψ

mixing coefficient α

Pauling, Nature of Chemical Bond (Cornell Univ. Press, NY, 1939) Lucovsky and White, Phys. Rev. B, Vol. 8, Nr. 2 (1973)
Littlewood and Heine, J. Phys. C.: Solid State Phys. Vol. 12 (1979) Littlewood, J. Phys. C.: Solid State Phys. Vol. 12 (1979) Robertson et al, Thin Solid Films 515, 7538–7541 (2007).

Overview

Introduction

- Part 1: Crystallization kinetics
 - Viscosity and glass formation
 - Crystallization speed
 - Distinction between nucleation and growth

Part 2: Physics of bonding

Part 3: Compositional trends

Part 4: Electronic behavior

Impact of local distortions

Static local distortion (Peierls)

=> reduced resonance bonding effects

Model potential: $V(x) = a x^2 + b x^4$

None or strong distortions: ~ harmonic behaviour

Slight distortions:

pronounced anharmonicity

flat, 'box-like' potential

large atomic fluctuations (~ Debye-Waller factor)

possibly enabling fast kinetics

What materials have such slightly distorted structures?

Matsunaga and Yamada, JJAP 43, 4704-4712 (2004)

6/IV/2012 M. Salinga IEEE Nano Symposium 2012

Classification of structures based on valence radii

FIG. 2. Electronegativity difference versus average hybridization for the $A^N B^{8-N}$ binary compounds.

Simons and Bloch, Phys. Rev. B Vol. 7 Nr. 6 (1973) St. John and Bloch, PRL Vol. 33 Nr. 18 (1974)

Figure 1. St John-Bloch plot for the IV–VI compounds and group V elements, using the bond orbital coordinates r'_{σ} and r_{π}^{-1} (equations (1.3) and (1.5)), calculated from the orbital radii of Chelikowsky and Phillips (1978). Increasing ionicity is measured by r'_{σ} , and increasing covalency by r_{π}^{-1} .

Littlewood, J. Phys. C.: Solid St. Phys. 13 (1980) Littlewood, CRC Critical Reviews in Solid State and Material Sciences Vol. 11, 3 (1985)

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATE

6/IV/2012

D. Lencer, M. Salinga, et al., Nature Materials 7, 972-977 (Dec. 2008)

Littlewood:

$$r_{\sigma}' = r_p^{\mathrm{A}} - r_p^{\mathrm{B}},$$
$$r_{\pi}^{-1} = \left[\left(r_p^{\mathrm{A}} - r_s^{\mathrm{A}} \right) + \left(r_p^{\mathrm{B}} - r_s^{\mathrm{B}} \right) \right]^{-1}$$

Generalization for non-binaries:

two coordinates:

based on valence radii of s- and porbitals derived from pseudopotential calculations

ionicity ~ size difference hybridization ~ s-p-splitting

treat materials as effective binaries

average cations	=	Α
average anion	=	В

St. John and Bloch, PRL Vol. 33 Nr. 18 (1974) Littlewood, J. Phys. C.: Solid St. Phys. 13 (1980) Phillips, Solid. State. Communications Vol. 22 (1977) Chelikowsky and Phillips, Phys. Rev. B Vol. 17 Nr. 6 (1978)

Map for phase change materials

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Map for phase change materials (zoomed in)

D. Lencer, M. Salinga, et al., Nature Materials 7, 972-977 (Dec. 2008)

Overview

Introduction

- Part 1: Crystallization kinetics
 - Viscosity and glass formation
 - Crystallization speed
 - Distinction between nucleation and growth

Part 2: Physics of bonding

Part 3: Compositional trends

Part 4: Electronic behavior

Voltage-time-dilemma

6/IV/2012

Driving force

0.25

 $\Delta G / H_{f}$

IEEE Nano Symposium 2012 M. Salinga

29

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

0.50

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Threshold switching: field dependent

D. Krebs et al., Applied Physics Letters 95, 082101 (2009)

Conclusion on voltage-time-dilemma in phase change materials

Crystallization kinetics strongly thermally activated

Heating strongly

 dependent on electrical threshold switching Extreme non-linearity of voltage and time

I. PHYSIKALISCHES INSTITUT (IA) : PHYSIK NEUER MATERIALIEN

Thank you for your attention!

SFB 917 **Nanoswitches** funded by **DFG**

RNITHAACHEN

JARA FIT

Jülich Aachen Research Alliance -Fundamentals of Future Information **Technologies**

Questions? Contact: martin.salinga @physik.rwth-aachen.de

