### Implement taste and smell with nanosensors

Zhiyong Li HP Labs, Palo Alto, CA, USA zhiyong.li@hp.com

# Microtechnology and semiconductor industry have revolutionalized modern life













#### San Bruno Fire









Pesticide residue?



# Analysis of food contaminants in Lab



Extraction

Sample concentrator

Analysis (GCLC-MS)

Time-consuming: several hours (exclude sample shipping) Expensive tools: hundreds of thousands dollar Complicated: need professional operator (labor cost)



### Safe, secure, sustainable world and people's well-being demand more sensors





Nanosensor is the solution to implement smell and taste (chemical sensing or chemosensation)

### Potential application of smell and taste nanosensors

Food and agriculture: food contaminant test and monitoring,
 \$1.6billion market

Healthcare: Disease diagnostic, patient monitoring, multi-function test strips \$53billion IVD market

Drug regulations: supply monitoring, anti-counterfeiting, 5-10% of WW pharmaceutical annual sales of \$800billion is believed to be counterfeit

Chemical industry: industrial chemical monitoring

Government: environmental monitoring, security and defense applications, food, agriculture and drug regulations

R&D organizations: developing new apps



# Silicon ChemFET Nanosensor

Low-cost high-value sensor technology for parallel detection of 100s – 1000s of bio-molecular species.



### Sensing proton to DNA



© Copyright 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP confidential.

#### Z. Li, et al, Nanoletter, 2004, 4, 245



## Smelling the hydrosulfide gas



#### I. Park, Z. Li et al, Nano Letters, 2007 and 2011



# Surface Enhanced Raman Spectroscopy (SERS) – enabling "molecular fingerprinting"

Localized surface plasmon on nanostructure can enhance the Raman scattering process -- SERS



SERS Enhancement Factor  $\propto |E(\omega)|^2 |E(\omega')|^2$ 

also approx. to ~  $|\mathsf{E}|^4$ 

Electromagnetic field induced EF: 10<sup>6</sup> - 10<sup>12</sup>



# Surface Enhanced Raman Scattering (SERS)

1974 – M. Fleischman studied pyridine on roughened silver with increased surface area.

1977 – Rick Van Duyne and Alan Creighton reported enhancement of  $\sim 10^5$  -  $10^6$  -- much too large to account for, by the increased surface area alone.







### HP's SERS Technology Evolution



## Molecular Trapped in SERS "hot-spots"



Hu, M. et. al. J. Am. Chem. Soc. 2010, 132, 12820.



# Top-down meets self-assembly

— the leap from stochastic to deterministic SERS structures

### Advantages of nanofinger structures

- Leverage advantages from both top-down and bottomup approaches – No need of costly critical dimension control.
- Easy scale-up for large area uniformity and reliable hot spots Roll-to-roll plastic fab.
- Micro-capillary driven "finger" closing Easy for fluidic interface, no power nor complicated controls needed.
- Molecule self-limiting of the gap sizes, as small as subnm – Physical limit of the smallest separation manufacturable, hence strongest coupling effect.
  Active molecule trapping by the fingers – Molecular
- tweezer with build-in sensing functionality.



## CAN WE DESIGN FINGER SYMMETRY?



© Copyright 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP confidential.

Ou, F. S. et. al. Nano Letters, 2011, 11, 2538-2542.



## SERS of nanofinger of different symmetry



Ou, F. S. et. al. Nano Letters, 2011, 11, 2538-2542.







### **Demonstration A:**

Melamine sensing with HP nanofinger SERS: >10,000× better than competitors



Melamine contamination in milk, 300,000 victims in China 2008



max. amount in infant formula (FDA):

1 mg/kg (1 part per million)





100 parts per trillion

### **Demonstration B:**

Chlropyrifos sensing with HP nanofinger SERS: >1,000× lower than EPA regulation



Chlropyrifos, is a **neurotoxin**, **carcinogen**, once popular pesticide used worldwide, and the residue can be found in vegetables, fruits, etc.



35 parts per trillion

EPA regulation: 0.1 parts per million on citrus fruits

