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Outline 
• Integrated photonics:  

– Developments over the years and a ”Moore’s” law for integrated 
photonics  

– Further progress? 

• Nanophotonics  and plasmonics:  
– Basic principles, waveguide properties 
– Performance limitations due to dissipative losses in passive 

circuits* 

• High optical confinement waveguides and photonic circuits  
• Metamaterials, what and why? 

• Loss compensating gain, quantum dots and power dissipation 
in active circuits 

• Conclusions 
 
* Note: There are numerous applications of plasmonics where optical losses are not 

so important , e g sensors and SERS (Surface enhanced  Raman scattering) 
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Integrated photonics 
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Vision in the mid 70s 
when the term Integrated optics was coined.. 

Δn k0 
L=π 
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State - of- the Art Photonic IC (U of Eindhoven) 
Optical Cross-connect: 100’ish components 

State-of the Art Electronic IC  (Intel Website) 
Pentium 4: 42 M Transistors 

Photonics is far behind electronics in maturity, 
But excellent research and business opportunities! 

After ~30 years of development .... 
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“Moore´s law” for photonic light wave 
circuits 

7 

• Moore´s law for electronic ICs pertains to circuits 
with generic elements (transistors, resistors, 
capacitors), some fraction of which are active 

 

• “Moore´s law” for PLCs:  
– No generic elements like in electronics but lots of different active and 

passive device structures with different functions, in different 
materials. (hence transform PLCs to some “equivalent elements”)  

– Assess Integration density for PLCs rather than total number of 
elements in our “Moore´s law” 
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A Moore´s law for integration density in terms of equivalent  number 
of elements per square micron of integrated photonics devices: 

Growing faster than the IC Moore´s law! 

factor of 2/year 

J. Zhejiang Univ SCIENCE 2006 7(12) p.1961-1964  
http://www.zju.edu.cn/jzus/ 

http://www.zju.edu.cn/jzus/
http://www.zju.edu.cn/jzus/
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Total minimum field width vs core width, 
planar waveguide, wavelength =1.55 mm 

 (core index, cladding index)  

9 

 

• Silica waveguide         (1.5,1.4)     3 mm 

• III V                               (3.4,3.1)     1 mm 

• Silicon/air    (3.5,1)        appr 400 nm 
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So how continue increasing integration density? 
Or  

What comes after Si? 

11 

• Photonic crystals? 
– But wavelength sized waveguides and resonators… 

• High refractive index? 
– But have to beat e g Si… 

• Metals or negative epsilon materials? 
– Losses… 

• ?? 
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What will integrated nanophotonics circuits 
bring (for telecom and interconnect)? 

 

The classical  issues for integrated photonics 

• Insertion  loss 

• Polarization sensitivity 

• Drive power 

• Interfacing 

• Functionality  

• Footprint  

• Power dissipation 

• Cost 
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13 

 
 

Nanophotonic integrated circuits based on 
negative e materials 

(plasmonic or metal optics) 
for high density lateral and  

longitudinal device integration 
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PLASMONICS 
…to be the key nanotechnology 

that will combine electronic and photonic 
components on the same chip… 

 

• Optical frequency subwavelength metallic wired circuits with propagation loss 
comparable to conventional optical waveguides;  

 

• Highly efficient plasmonic LEDs with tunable radiation properties; 

 

•  Active control of plasmonic signals by electro-optic, all-optical, and piezoelectric 
modulation and gain mechanisms to plasmonic structures; 

 

• 2D plasmonic optical components for  coupling single mode fiber directly to 
plasmonic circuits;  

 

• Deep subwavelength plasmonic nanolithography over large surfaces. 

 

• Subwavelength imaging 

 

 

 

 
Ekmel Ozbay, SCIENCE VOL 311 13 JANUARY 2006 
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Dispersion equation for TM surface waves (TM-
1) 

15 

Wave equation and 
continuity of Ez gives: 
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Also called Surface Plasmon Polariton 
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• Trade off between optical confinement 
and photon life time (and Q) 

• Group velocity converts photon 
lifetime to propagation distance  

 

 

1717 
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Examples of ultra compact 
waveguides and a suggested 

roadmap for integrated optics 
devices 

21 
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Fabrication and Characterization of sub-
wavelength structures 

The top view of the structure 

Schematics (a) and |Ex | mode 
profile (b) of the metal slot 
waveguide with a 150-nm-wide 
silicon core. 

L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated 
metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006) 
 

FDTD simulation of the coupling loss 
versus the taper length for the 150-nm-
wide slott. Inset: |Ex | field distribution 
of the taper coupler for various taper 
lengths: (1)  Lt= 325 nm, (2) 450 nm, (3) 
575 nm. 

Theoretical and experimental propagation 
losses for several slot waveguides with 
different slot width 

Propagation loss of less than 0.8dB/µm in a metal slot waveguide on Si with predicted 
confinement below the optical wavelength (1.55µm. 

22 
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Time-average power flow along propagation direction 

23 

Field size: 10 x 20 nm2 

Vacuum wavelength 
1000 nm 

Silver 

Silicon 
Air Air 

M Yan, L Thylen, M Qiu, D Parekh, Optics Express 2008 
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Energy flow around a metal  
nanosphere 
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Plasmonics: A Route to Nanoscale Optical Devices 
By Stefan A. Maier, Mark L. Brongersma, 

Pieter G. Kik, Sheffer Meltzer, Ari A. G. Requicha, and Harry A. Atwater 
 

25 
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Log of E-field intensity in dB 
averaged by period 

Distance (nm) 

Intensity along the chain of spheres (along black line in 
the left Fig) 

Spheres 

Without spheres 

Ekaterina Ponizovskaya, HP Labs 
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Metamaterials 
 

27 

• Artificial manmade materials 
• Properties based on e g nanoparticle 

inclusions (much smaller than the  
wavelength) in a host medium 

• Properties based on structural rather 
than material characteristics 
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 " Colours in Metal Glasses and in Metallic Films." By J. 0. Maxwell Garnett, 
BA, Trinity College, Cambridge Proceedings of the Royal Society of London 
1904  
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Maxwell Garnett: 
Relation between macroscopic epsilon  
and dielectric constants of spherical 
 particles and the matrix, where they are 
 immersed, with fill factor  

 

Effective medium epsilon 
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Loss happens... 
 
 

29 

Try optical amplification 
 

(There are other possibilities) 
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Geometrical parameters 

32 

• Cubic lattice of QDs + Ag wires 

• lattice parameter = 13 nm,  

• QD diameter = 10 nm (radius=5nm),  

• packing fractions: QD fraction = 0.24, Ag wire 
fraction=0.11 (1 Ag wire per u.c.) 

• wire diameter = 3.4 nm 
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Power dissipation in loss compensated  
amplifier systems 

• Power dissipation due to  

– Dissipative losses of the metal structure 

– Auger recombination in the quantum dots.  
 

• Nonradiative dissipation per unit propagation length  limits 
lateral packing density (say to 200 nm) 

 

• The gain to offset losses limits input signal power, which will 
in turn, for SNR reasons, limit the information capacity of the 
chip => trade off between low power dissipation and signal 
to noise ratio 
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 Model circuit used in integration density calculations.  
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Interfacing 
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Silicon-gold slotline coupler 

Mini Qiu et al, KTH: Broadband high-efficiency surface plasmon polariton  
coupler with silicon-metal interface 
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Theory Experiment 

w:200 nm,  
θ:10º, 
 l: 0.25 μm 
d: 200 nm  

Coupling efficiency: 

Theory: 88%/facet 

Experiment: 28%/facet 
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Eilert Berglind, Lars Thylen, and Liu Liu, 
 “Plasmonic/Metallic Passive Waveguides and Waveguide Components for Photonic Dense Integrated Circuits:  
A Feasibility Study Based on Microwave Engineering”, to appear in IET Optoelectronics ( previous IEE optoelectronics) 

Plasmonics and microwaves  
and the role of TEM waves 
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• Devices based on negative epsilon and compensated 
loss metamaterials, as accomplished by e g gain in 
QDs:  

– =>Limits on integration density due to power dissipation due 
to gain 

• If we require dimensions of  circuits <  Si photonics 
circuits  

=> epsilon<0 is required   

 optical loss 

  ( for circuits) gain required  

   {trade off low power dissipation vs. SNR} 
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So to return to the statement above… 

• Optical frequency subwavelength metallic wired 
circuits with propagation loss comparable to 
conventional optical waveguides? 

 

Alternative approaches to this : 

• Gain with monodisperse quantum dots with small 
linewidth to give large amplification 

• T=4K and less gain 

• Si waveguides for transport in photonics circuits, 
plasmonics for functional elements  

• ….. 
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Nanophotonics target performance data: 
A ”roadmap” 

41 

• Waveguides: Field width laterally  < 75 nm,  
– This gives lateral packing of waveguides that rivals that of 

electronics.  

– Has to be significantly lower than the Si one (appr 350 nm for 
Si/air at 1550 nm vacuum wavelength) 

 

• Waveguide components: Effective index significantly in 
excess of indices of conventional waveguide materials, 
say >10 
– This gives generally tightly confined optical fields as above 

– And short resonators and other wavelength selective devices, 
since the wavelength in the medium will shrink with higher 
effective indices. 
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one telecom application vision… 

 

42 
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EU project Multiwavelength transport network, the first  
managed Multiwavelength  test bed  

( Ericsson, BTRL, Pirelli, Uni Paderborn.., 1992-96) 
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...to paraphrase Archimedes... 

44 

……Give me a real, negative and 
practically implementable e, over 
some wavelength range, and I will 
(perhaps) be able to  use it as a 
massive leverage for integrated 
photonics…. 
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