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Integrated photonics:

- Developments over the years and a "Moore’s” law for integrated
photonics

- Further progress?
Nanophotonics and plasmonics:
_ Basic principles, waveguide properties
_ Performance limitations due to dissipative losses in passive
circuits*®
High optical confinement waveguides and photonic circuits
Metamaterials, what and why?

Loss compensating gain, quantum dots and power dissipation
in active circuits

Conclusions

* Note: There are numerous applications of plasmonics where optical losses are not
o important, e g sensors and SERS (Surface enhanced Raman scattering)
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Integrated photonics
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o . (LaBs™)
Vision in the mid 70s

when the term Integrated optics was coined..
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(LABS™]
Photonics is far behind electronics in maturity,
But excellent research and busmess opportunltles'

After ~30 years of development ... I
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State - of- the Art Photonic IC (U of Eindhoven) ' s : |
Optical Cross-connect: 100’ish components ‘ '

State-of the Art Electronic IC (Intel Website)
Pentium 4: 42 M Transistors
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id Vioore s law” for photonic light ve> ]

circuits

Moore’s law for electronic ICs pertains to circuits
with generic elements (transistors, resistors,
capacitors), some fraction of which are active

“Moore’s law” for PLCs:

No generic elements like in electronics but lots of different active and
passive device structures with different functions, in different
materials. (hence transform PLCs to some “equivalent elements”)
Assess Integration density for PLCs rather than total number of
elements in our “Moore’s law”
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A Moore s law for integration density in terms of equivalent number
of elements per square micron of integrated photonics devices:
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Growing faster than the IC Moore’s law!
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Total minimum field width vs core width,
planar waveguide, wavelength =1.55 um

(core index, cladding index)

. Silica waveguide (1.5,1.4) 3 um
v (3.4,3.1) 1 pum
. Silicon/air (3.5,1) appr 400 nm
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(LABS™)
So how continue increasing integration density?

Or
What comes after Si?

Photonic crystals?

- But wavelength sized waveguides and resonators...
High refractive index?

_ But have to beat e g Si...

Metals or negative epsilon materials?

_ Losses...
27
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What will integrated nanophotonics circuits
bring (for telecom and interconnect)?

The classical issues for integrated photonics
Insertion loss
Polarization sensitivity
Drive power
Interfacing
Functionality
Footprint
Power dissipation
Cost

7/5/09 1212
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Nanophotonic integrated circuits based on
negative € materials

(plasmonic or metal optics)
for high density lateral and
longitudinal device integration
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PLASMONICS
...to be the key nanotechnology
RovaL msTiTuTE that will combine electronic and photonic
components on the same chip...

Optical frequency subwavelength metallic wired circuits with propagation loss
comparable to conventional optical waveguides;

Highly efficient plasmonic LEDs with tunable radiation properties;

Active control of plasmonic signals by electro-optic, all-optical, and piezoelectric
modulation and gain mechanisms to plasmonic structures;

2D plasmonic optical components for coupling single mode fiber directly to
plasmonic circuits;

Deep subwavelength plasmonic nanolithography over large surfaces.

Subwavelength imaging

Ekmel Ozbay, SCIENCE VOL 311 13 JANUARY 2006
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Wave equation and
continuity of Ez gives:
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Real and imginary parts of epsilon of some metals
and semiconducors
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. Trade off between optical confinement
and photon life time (and Q)

. Group velocity converts photon
lifetime to propagation distance

7/5/09 1717
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Metal/dielectric interface surface waveguide
Group velocity dispersion
Lossless case
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”Slow light”

log frequency
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Examples of ultra compact
waveguides and a suggested
roadmap for integrated optics
devices
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‘istlabrication and Characterization of sn[l:ABS""]
— wavelength structures

L. Chen, J. Shakya, and M. Lipson; 'Subwavelength confinement in an integrated
metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006)

Propagation loss of less than 0.8dB/um in a metal slot waveguide on Si with predicted
confinement below the optical wavelength (1.55um.
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Time-average power flow along propagation direction
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Fig. 1. Energy flux (Poynting vector) around a metal nanoparticle under plane
wave excitation at two frequencies: a) When the excitation occurs far from the
plasmon resonance frequency, the energy flow is only slightly pertubed.
b) When the excitation occurs at the plasmon frequency, the energy flow is
directed towards the particle. This resonant field enhancement is a key element
of plasmon waveguides. Image taken from C. F. Bohren, D. R. Huffman, Ab-
7/5/09 sorption and Scattering of Light by Small Particles, copyright Wiley, New| York
1983; this material is used by permission of John Wiley & Sons, Inc.
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S Plasmonics: A Route to Nanoscale Optical Devices
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Mo By Stefan A. Maier, Mark L. Brongersma,

ROYAL INSTITUTE

Pieter G. Kik, Sheffer Meltzer, Ari A. G. Requicha, and Harry A. Atwater

Fig. 5. a) Scanning electron microscopy image of a 60° corner in a plasmon
waveguide, fabricated using electron beam lithography. The gold dots are
~30 nm 1in diameter and spaced by =75 nm (center-to-center). b) Straight plas-
mon waveguide made using 30 nm diameter colloidal Au nanoparticles. The
particles were assembled on a straight line using an atomic force microscope in
contact mode, and subsequently imaged in non-contact mode.
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Metamaterials 5"

. Artificial manmade materials

Properties based on e g nanoparticle
inclusions (much smaller than the
wavelength) in a host medium

Properties based on structural rather
than material characteristics

7/5/09 2727
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Effective medium epsilon

ROYAL INSTITUTE
OF TECHNOLOGY

Maxwell Garnett:

Relation between macroscopic epsilon
and dielectric constants of spherical
particles and the matrix, where they are
immersed, with fill factor n

" Colours in Metal Glasses and in Metallic Films." By J. 0. Maxwell Garnett,
BA, Trinity College, Cambridge Proceedings of the Royal Society of London
1904
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Loss happens...

(LABS™)

Try optical amplification

(There are other possibilities)

7/5/09
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Geometrical parameters

. Cubic lattice of QDs + Ag wires
. lattice parameter =13 nm,
. QD diameter = 10 nm (radius=5nm),

. packing fractions: QD fraction = 0.24, Ag wire
fraction=0.11 (1 Ag wire per u.c.)

. WwWire diameter = 3.4 nm

7/5/09 3232 32
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Power dissipation in loss compensated
amplifier systems

Power dissipation due to
- Dissipative losses of the metal structure
- Auger recombination in the quantum dots.

Nonradiative dissipation per unit propagation length limits
lateral packing density (say to 200 nm)

The gain to offset losses limits input signal power, which will
in turn, for SNR reasons, limit the information capacity of the
chip => trade off between low power dissipation and signal
to noise ratio

7/5/09 3333
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T Chip size L

Optical inputsignals - -__--___-_-_”_”--_-”--_"C 3| Output

Waveguide spacing !
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Model circuit used in integration density calculations.
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Silicon-gold slotline coupler

(LABS™)

w
i

Mini Qiu et al, KTH: Broadband high-efficiency surface plasmon polariton

coupler with silicon-metal interface

7/5/09
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Plasmonics and microwaves LABS
and the role of TEM waves
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Devices based on negative epsilon and compensated

loss metamaterials, as accomplished by e g gain in

QDs:

_ =>Limits on integration density due to power dissipation due
to gain

If we require dimensions of circuits < Si photonics

circuits
=> epsilon<0 is required

- optical loss
_. ( for circuits) gain required

. {trade off low power dissipation vs. SNR}
7/5/09 3939
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So to return to the statement above...

Optical frequency subwavelength metallic wired
circuits with propagation loss comparable to
conventional optical waveguides?

Alternative approaches to this :

Gain with monodisperse quantum dots with small
linewidth to give large amplification

T=4K and less gain

Si waveguides for transport in photonics circuits,
plasmonics for functional elements

7/5/09 4040
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Nanophotonics target performance data:

A "roadmap”

Waveguides: Field width laterally < 75 nm,

~ This gives lateral packing of waveguides that rivals that of
electronics.

- Has to be significantly lower than the Si one (appr 350 nm for
Si/air at 1550 nm vacuum wavelength)

Waveguide components: Effective index significantly in
excess of indices of conventional waveguide materials,
say >10

_This gives generally tightly confined optical fields as above

- And short resonators and other wavelength selective devices,
since the wavelength in the medium will shrink with higher
effective indices.

7/5/09 4141 'r,a




one telecom application vision...

7/5/09

(LABS™)

4242

42




EU project Multiwavelength transport network, the first
managed Multiwavelength test bed
( Ericsson, BTRL, Pirelli, Uni Paderborn.., 1992-96)
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...to paraphrase Archimedes...

...... Give me a real, negative and
practically implementable & over
some wavelength range, and | will
(perhaps) be able to use it as a
massive leverage for integrated
photonics....

7/5/09 4444 N
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