Why programmability is necessary but not sufficient for future logic chips

Steve Teig – Founder and CTO
ASIC development is becoming prohibitive
 – But is there a practical alternative?

Make it programmable, or you won’t make it
 – The good news

The specter of interconnect for programmable logic devices
 – The bad news

The challenge of abstraction
 – The real opportunity
Trouble in ASIC-land

Development costs are skyrocketing

Source: Gartner 2009

Million US$

$- $20 $40 $60 $80 $100 $120

180-nm 130-nm 90-nm 65-nm 45-nm 32-nm

Yield Ramp-up cost ($M)
Mask cost ($M)
Design cost ($M)

Source: Gartner 2009
The most important event in the history of the software business was…

Interactive development at the desktop!

Remember sending punch cards to a central computer center?
 – Wait 24 hours for a printout, debug, and try again…

There was no real software industry in that era

Large-scale software development was almost impossible
 – IBM 360 OS, Apollo moon shot, ?
The rising value of programmability

- Explore alternatives, and try them at your desktop
 - Architectural exploration
 - High-performance verification

- Respond to new customer requirements or competitive threats

- Amortize the cost of developing silicon
 - Standard parts but with unbounded customization
 - Add unique value through system architecture and system software

- Learn from how people use (standard) microprocessors

- Add unique value through system architecture and software
The benefits of programmable logic devices

- Mainstream high-end FPGAs
 - No upfront cost!
 - Up to ~200K LUTs (≈ 3 Mgates) for 200 in volume
 - Up to ~500K LUTs (≈ 7 Mgates) for 1000 in volume
 - Up to ~300 MHz performance
 - Up to 48 high-performance SerDes plus ~900 general-purpose I/Os

- Same family of chips can serve many applications, many markets

- Mainstream higher-volume FPGAs
 - No upfront cost!
 - 5-50 unit cost
 - 10K-100K LUTs (≈ 150Kgates – 1.5 Mgates)
 - Up to ~150-175 MHz performance
FPGAs have their own challenges…

The specter of interconnect on programmables

- Programmable device must support every possible netlist
 - Vs. ASIC, which has just one
- Rent’s Rule: more logic \rightarrow much more interconnect
 - Super-linear growth of interconnect requirements

- Up to 90% of FPGA real estate is interconnect
- Up to 70% of FPGA delay is interconnect
 - Had to spend exponential area (4-LUT \rightarrow 6-LUT) to try to manage it
- >10x more power from interconnect than from LUTs
- >10x more power from wires than from routing MUXes
 - Support for all possible netlists is costly…

- I/O bandwidth requirements increase every generation
 - How can the fabric support the additional, high-performance interconnect?
Towards a programmable device that can actually compete with ASIC

Reducing chip area is critical

Silicon = $1B per acre

Vs.
Moving in the third dimension
Moving in the third dimension, reconsidered
3PLD: a better programmable device than FPGA
Spacetime™ vs. 40nm high-end FPGAs

- 2.5x LOGIC DENSITY
- 2x MEMORY DENSITY
- 3x MEMORY PORTS
- 4x DSP PERFORMANCE

“...capability unmatched by traditional FPGAs or CPLDs.”

“...unmatched capability and affordability.”

“...can surpass performance of FPGAs or CPLDs.”
More than Moore’s Law

- **40nm** — New process density increases density by ~2x per generation
- **8 folds** — New process speed increases our density by additional ~1.5x
Raising the level of abstraction: the big prize

- Physical design and verification for ASIC/ASSP impedes abstraction
- Programmable devices beg for a software-like programming model
- This is the big prize!

- We can put billions of transistors on a programmable chip
- We can moderate the interconnect requirements with Spacetime
 - More than Moore’s Law benefits from process advancement
- We’ve already built production Spacetime H/W and RTL-to-silicon flow

- But...
- Designing large systems demands a higher level of abstraction
- It ain’t C (or C++ or Java or SystemC or SystemVerilog or …)
EDA keeps trying to make hardware look like C
- C-like syntax for HDLs
- “High-level synthesis”, “Silicon compilers”, etc.

C’s model of computation looks like a single μP, not custom hardware!
- Serial computation, one thread, (over-)scheduled by the programmer
- All computation from (register1, register2, op) \(\rightarrow\) register

To design large, reliable systems in hardware
- Find a different software model that still looks “software-ish”, but…
- Allows for automatic translation to fine-grained hardware (which C doesn’t!)

Spacetime makes this much easier
- Software based on “pure functional programming” can be automatically translated to Spacetime hardware

Large systems at advanced process nodes will need software advancements
- As well as hardware advancements
Summary

- ASIC development costs are prohibitive

- FPGAs address development costs, but are...
 - 20-40x larger area than ASIC
 - 2-4x slower than ASIC
 - 9-12x higher power than ASIC

- FPGAs are dominated by interconnect
 - Even next-generation FPGAs will not address this fundamental problem
Spacetime offers a programmable fabric that addresses interconnect
- 5x price/performance advantage vs. FPGA 😊
- FPGA-like power 😊 (at 40nm…)
- Unique, more-than-Moore’s-Law advantage

Spacetime changes the game for logic chips in advanced processes
Advanced process + Spacetime = first credible PLD alternative to ASIC
- ASIC-competitive area 😊
- ASIC-competitive performance 😊
- Power penalty vs. ASIC 😞

Programming model would change the game again
Advanced process + Spacetime + programming model >> ASIC