
ReRAM: 

How Advances in Nanotechnology Will Enable 

the Next Generation of Exascale Computers 

 

 

April 6, 2012 

 

Matt Marinella 

Sandia National Laboratories 

mmarine@sandia.gov 
 

 

 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department 

of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 
4/17/2012 



Outline 

• Intro to High Performance Computing 

•The Exascale Challenge 

•Solutions Ready Today 

•Opportunities for Emerging NVM 

–Storage & Hybrid Main Memory 

–Universal Memory 

•Conclusions 

Matt Marinella 4/17/2012 



Supercomputers 

• Define the forefront of computing power 

• Modern architectures are massively parallel systems 

• Thousands of off the shelf processors & DRAM chips 

– GPUs or CPUs 

• Performance measured in FLOPS: 

– Floating point ops per second 

• Benchmarked by LINPACK 

– Solve n x n system of linear eqns 

• Out of date quickly 
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P. Kogge, IEEE Spectrum, 48, 48-54, 2011. 



Modern Supercomputer Architecture 

• As defined by Prof. Kogge: 

• “Heavyweight” node 

– Commodity microprocessor 

•  “Lightweight” node 

– Custom microprocessors, low power 

• “Heterogeneous” node 

– Uses GPUs + heavyweight master 
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Courtesy Peter Kogge 

nvidia.com 

Heterogeneous (GPU) Node & Architecture 

IBM Lightweight Nodes 

P. Coteus, IBM J. Research Dev., 49, 213-248, 2005. 



What are Supercomputers Used For? 

• Predicting the weather 

• Google searches 

• Simulating nuclear explosions 

• Quantum physics 

• Molecular dynamics & DFT simulation 
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Supercomputing Olympics 

Jaguar 

Tianhe-1 

K computer 
10 PF/s 

1.75 PF/s 

2.5 PF/s 



The World’s Best Computers 

• K computer  (RIKEN, Japan) 

– Speed: 10.5 petaflops (Rmax) 

– Cores: 705k (SPARC64 2.0 GHz) 

– Memory: 1.4 PB 

• Tianhe (China) 

– Speed: 2.5 petaflops (Rmax) 

– Cores: 186k (NVIDIA 2.93GHz GPU) 

– Memory: 229 TB 

• Roadrunner (Oak Ridge National Lab, US) 

– Speed: 1.75 petaflops (Rmax) 

– Processors: 224k (Cray Opteron 6-core, 2.6GHz) 

– Memory: 360 TB 

– Upgrade to GPUs this year – est. 20 petaflop 
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Power 

• K computer   

– Power: 13 MW 

• Tianhe 

– Power: 4 MW 

• Roadrunner 

– Power: 7 MW  enough to power 5000 homes 

• Palo Verde Nuclear Generating Station 

– Power: 3 GW 

• Typical Coal Fired Power Plant 

– Power: 500 MW 

• 1 MW = $1,000,000/year power bill 

• X pJ per operation = X MW per 1018 operations/sec (Exaflop) 
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Will Exascale need dedicated Nuclear Power Plant? 
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Grand Challenges for Exascale 

• DARPA Exascale Report Lists Four Main Challenges: 

– Energy and Power  

– Memory and Storage 

– Concurrency and Locality 

– Resiliency 

• US Dept. of Energy takes action: Exascale Initiative 
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Major role for emerging nonvolatile 

memories in three of four challenges! 
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DRAM Bytes per Flop 
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Present Day Solution: 3D DRAM 

• Micron/Intel Hybrid Memory Cube 

• DRAM die stacked on logic 

• Connected via through-silicon-via 

• Very clever combination of today’s 

technologies 

• Combine with on-chip optical 

interconnects 
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Micron, Hotchips 2011 



Hybrid Memory Cube Power Claims 

• Major power & bandwidth improvements 

Matthew Marinella 4/17/2012 

Micron, Hotchips 2011 



How Far Will TSV Stacking Take Us? 
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DRAM, TSV Limitations 

• HMC-like technology should carry us to <100 pJ/operation 

• DRAM Limits: From ITRS Roadmap PIDS Chapter 

– DRAMs struggling to maintain reasonable equivalent 

oxide thickness 

– Dielectric for cells 30nm to 20 nm still TBD 

– Is scaling possible below 20 nm? 

– Will always be volatile – not a Storage Class Memory 

• Through Silicon Via 

– How many chips can you stack? 

– How many TSVs per chip? 
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Micron Stacked DRAM 

Stacked DRAM Cell 

Courtesy Dieter Schroder, ASU 
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Timeline of Supercomputer Architectures 

4/17/2012 

2020 2012 2030? 

Standard 

Heavy/ 

Light node 

10 Petaflop 

1000 pJ/op 

2015 

3D Stacked 

DRAM + chip-

chip optical 

interconnect 

100-1000 Petaflop 

10-100 pJ/op 

Neuromorphic, 

Crossbar 

Computers, 

RSFQ, 

Quantum… 

Storage 

Class 

Memory 

Timelines 

very fuzzy 

10-100 Exaflop 

0.1-1 pJ/op 

Zetaflops+ 

<1 aJ/op 

Major opportunities for 

emerging NVM technologies 

Emerging NVM 

for Storage, 

DRAM/NVM 

Hybrids 

 1-10 Exaflop 

1-10 pJ/op 

(Exact timeline TBD) 

Micron Hotchips 2011 
Qureshi, HPCA 2010 Kügeler et al, SSE, 2009 



First Opportunity for NVM: File Storage 

• First goal for emerging NVM technologies 

• Need to beat high end flash: 

1. Voltage: < 15V 

2. Endurance: > 104 W/E cycles 

3. Scalability: < ~18 nm, 3D stackable 

4. W/E time: < 100 µs 

5. Retention: > 10 years 

• All emerging technologies have proven these capabilities 

Matthew Marinella 4/17/2012 

Awaiting high capacity commercial parts! 



Second Opportunity for NVM: 

DRAM/NVM Hybrid Main Memory 

• Second interesting short term possibility for NVM 

• Architecture would use emerging NMW with limitations 

• DRAM buffer only needs 3% of main memory 

• Lazy Write Organization (Qureshi, 2009) 

1. HDDDRAM, allocate space in NVM 

2. If needed: DRAMWrite Que 

3. Write QueNVM 
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Resiliency 

• Exascale computers will have a lot of hardware 

• 10-100 petabytes main memory  

– 10-100 million DRAM chips 

• 100’s of exabytes storage 

– Millions of hard drives 

• Failures are imminent! Could be a daily routine! 

• Supercomputers must use checkpointing 

• Traditional checkpointing at Exascale will not work 

– More time spent restoring than computing! 

• Solution: Hardware checkpointing with NVM 

– Hybrid Main Memory 

– Storage Class/Universal Memory 
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Universal/Storage Class Memory: 

A Game Changer 
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L1  

SRAM 

 

DRAM 

Magnetic/Flash 

Archive: Tape (& paper files) 

SRAM 

Storage Class 

Memory: 

Emerging NVM 

Archive: Magnetic Disks 

L2/L3  

Cache 

• Very fast 

• Large area 

• Volatile 

• Expensive 

• Volatile 

• Inexpensive 

• Nonvolatile 

• Slow 

• High power 

• Inexpensive 

Very slow, nonvolatile 

• Nonvolatile 

• Scalable 

• Fast 

• Low power 

• Inexpensive 



What will Universal Memory Look Like? 
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Optical Interconnects

Off-chip and long-

distance on-chip
Logic

< 7nm

Si CMOS?

RF & Power Circuitry

Integrated GaN HEMTs 

(Graphene FETs?)

Integrated Si/Ge 

Photon source

Memory: Terabit cm
-2 

Densities

ReRAM 3D Layered

Multiple Levels Per Cell (MLC)



Universal Memory-Logic “Cube” 

• Several hundred cores 

• Hundreds of teraflops 

• Main memory & storage 

• Tens of terabytes 

• Tens of Watts 

Matthew Marinella 4/17/2012 

2012 Server Rack 

Single Chip 



Now We Are Ready for Exascale 

• New exascale strawman: Universal Memory Logic Cube Node 

• This will solve a lot of problems! 

Matthew Marinella 4/17/2012 

Memory/Logic 

Processors 

Hi speed fiber optic links 

Peripheral chips, 

power management 

Optical router 

To next node 

Local UMLC connections 

Many new architectural questions must be answered 



ITRS Requirements for SCM 
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HDD [B] NAND flash [C] DRAM
Memory-type 

SCM
Storage-type SCM

~100ms

(block erase ~1 ms)

Endurance (cycles) unlimited 10
4
-10

5 unlimited >10
9

>10
6

Retention >10 years ~10 years 64 ms >5 days ~10 years

ON power (W/GB) ~0.04 ~0.01-0.04 0.4 <0.4 <0.04

Standby power ~20% ON power <10% ON power ~25% ON power <1% ON power <1% ON power

Areal density ~ 10
11

 bit/cm
2

~ 10
10 

bit/cm
2

~ 10
9 
bit/cm

2
>10

10
 bit/cm

2
>10

10
 bit/cm

2

Cost ($/GB) 0.1 2 10 <10 <3-4

Parameter

Target

Read/Write latency 3-5 ms <100 ns <100 ns 1-10ms

Benchmark [A]

ITRS ERD 2011 



Supercomputing SCM 

Requirements* for SCM use in a Supercomputer 

1. Energy: < 1pJ per write/erase op 

2. Endurance: > 1015 W/E cycles 

3. Scalability: < 10 nm, 3D stackable, no select transistor 

4. Read/Write: > 1 ns 

5. Retention: > 10 years fully scaled at operation temp 

6. Reliable Operation 

Matthew Marinella 4/17/2012 

*Note: Requirements open to debate – especially retention 



SCM Candidates 
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ReRAM STT-MRAM Phase Change 

ECM VCM 

n
+

Bit 

Line

n
+

p

Word 

Line Plate

Heater

Phase Change

Material

Resistive 

Electrode

(Heater)

Chalcogenide
TMO

Electrode

Electrode

V

+

+ +
+

- --

-

-

-

+

+
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Emerging Nonvolatile Memories 
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 DRAM Flash (NOR-NAND) ReRAM/Memoristor STT-MRAM PC-RAM

2012 Maturity Production (30 nm) Production (18 nm) Development Production (65 nm) Production (45 nm)

Min device size (nm) 20 18 <10 16 <10

Density (F2) 6 4 4 8-20 4F2

Read Time (ns) < 10 105 2 10 20

Write Time (ns) < 10 106 2 13 50

Write Energy (pJ/bit) 0.005 100 <1 4 6

Endurance (W/E Cycles) >10
16

10
4

10
12

10
12

>10
9

Retention 64 ms > 10 y > 10 y weeks > 10 y

BE Layers FE FE 4 10-12 4

Process complexity High/FE High/FE Low/BE High/BE Low/BE

The infamous comparison chart 

Biggest challenge for PCM: 

High erase current 

Biggest challenge for STT-MRAM: 

Retention/Scaling/Temperature 

Biggest challenge for ReRAM: 

Catch-up 



A More Subjective Survey 
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Prototypical (Table ERD3) Emerging (Table ERD5)

Parameter FeRAM STT-MRAM PCRAM

Emerging 

ferroelectric 

memory

Nanomechanical 

memory
Redox memory Mott Memory

Macromolecular 

memory

Molecular 

Memory

Scalability

MLC

3D integration

Fabrication cost

Endurance

?

?

?

?

?

?

?

Scalability Fmin >45 nm

MLC difficult

3D integration difficult

Fabrication cost high

Endurance ≤1E5 write cycles demonstrated

Scalability Fmin=10-45 nm

MLC feasible

3D integration feasible

Fabrication cost medium

Endurance ≤1E10 write cycles demonstrated

Scalability Fmin <10 nm

MLC solutions anticipated

3D integration difficult

Fabrication cost potentially low

Endurance >1E10 write cycles demonstratedITRS ERD 2011 



ReRAM Endurance Improvements 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
10

3
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5
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7
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9
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15 Entry Point for DRAM Replacement

Fujitsu Labs

Panasonic Corp.

SAIT
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Will this trend continue? 

Courtesy J. Joshua Yang (HP Labs) 



ReRAM’s Path to Universal Memory 

• ReRAM is the least mature of major contenders 

– Also (arguably) shows the greatest promise 

• Device/material level improvements 

– Need > 1015 W/E cycles (1016 desired) 

– Scalable select device (no select transistor) 

– Uniformity & reliability issues (can circuitry help?) 

– Still must eliminate sneak paths/parasitics 

• Circuitry improvements 

– Read/write, wear leveling, error correction 

• Architectural 

– Reorganize buffers, row/col for max efficiency 

– 3D addressing for stacked memory 
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The Good News: Challenges all result from immaturity 

No fundamental physical showstoppers 



Select Device 

• Major open issue with ReRAM 

• I-V linearity governs array size 

• Limits the array size 

• DO NOT want a MOSFET 

– Kills scaling! 

• Solutions: 

– Bilayer Nonlinearity 

– Complementary Resistive Switch 
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E. Linn et al, Nature Mater. 9, 403-406, 2010 

J. Yang et al, APL 100, 113501, 2012. 



3D Stack Addressing 

• How do we control many layers with a CMOS base layer? 

Matthew Marinella 4/17/2012 

Strukov et al, PNAS, 2009 



Array Architecture 

• How do we architect ReRAM as a main memory array? 

• What new issues will we face when converting from 

DRAM array  ReRAM 

• This process has been started for PCM 

– Example – PCM architecture and write scheme below 

• Do we need wear leveling? 

• Work needed for ReRAM (can learn from PCM techniques) 
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Qureshi et al, HPCA 2010. 



Summary 

• Exascale computing will be a tough road 

– Biggest challenges: Power and memory 

• Exascale will need an advanced memory solution 

– Whether this is at 0.1 or 10 exaflops is TBD 

• Current solution: Hybrid Memory Cube & optical 

interconnects 

• Next generation: Hybrid DRAM & Advanced Memory 

• Universal/Storage Class Memory is coming 

– This is a game changer for all scales of computing 

– Will be a major technological breakthrough of this 

decade 

• Universal Memory based on ReRAM will enable a new 

generation of supercomputers 
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