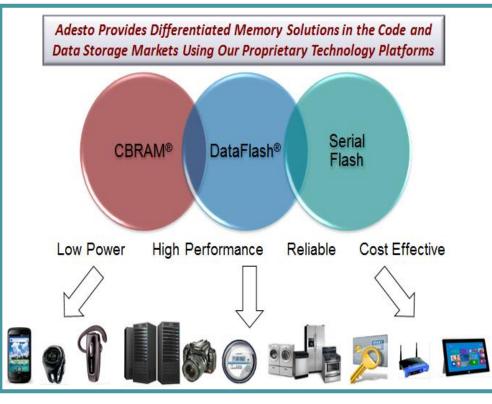
Conductive-bridge Memory (CBRAM[®]) with Excellent High-temperature Retention and Tolerance to High Levels of Gamma Radiation

Dr. Venkatesh P. Gopinath, V.P. of CBRAM Technology Adesto Technologies



- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto[®]
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions

Adesto Technologies Corporate Overview

Overview:

Private company founded in 2007 by semiconductor industry veterans

Locations:

Headquarters in Silicon Valley, California / Offices in Asia, Europe

Employees:

100 (Engineering=70, Sales/Marketing=20, Other=10)

Status:

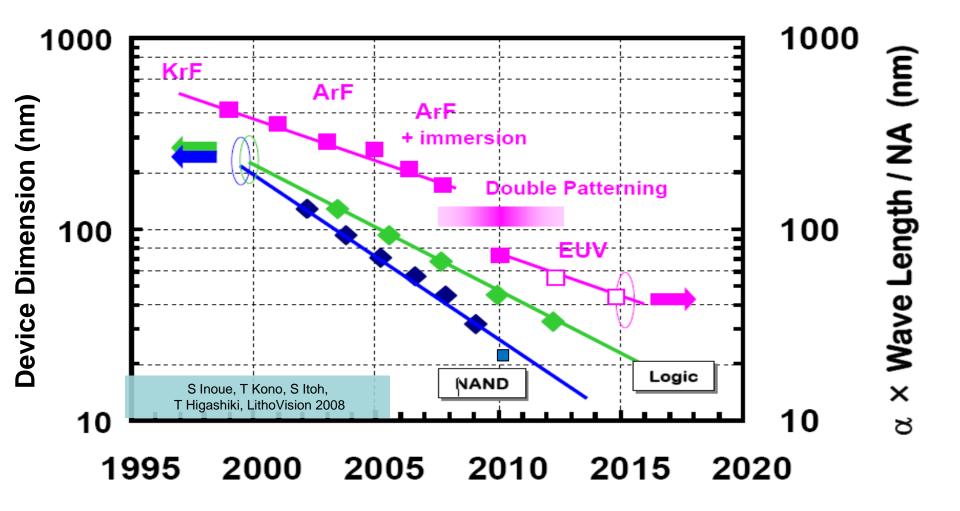
\$50M+ profitable business, supporting over 100 tier 1 customers

Business Model:

Discrete product manufacturing and technology licensing

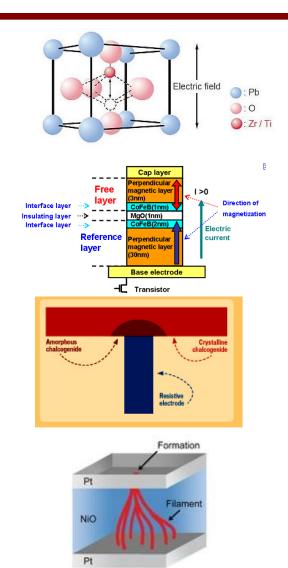
Technologies:

Serial Flash / DataFlash® / CBRAM®


Solid Intellectual Property Position: Over 100 patents granted or filed

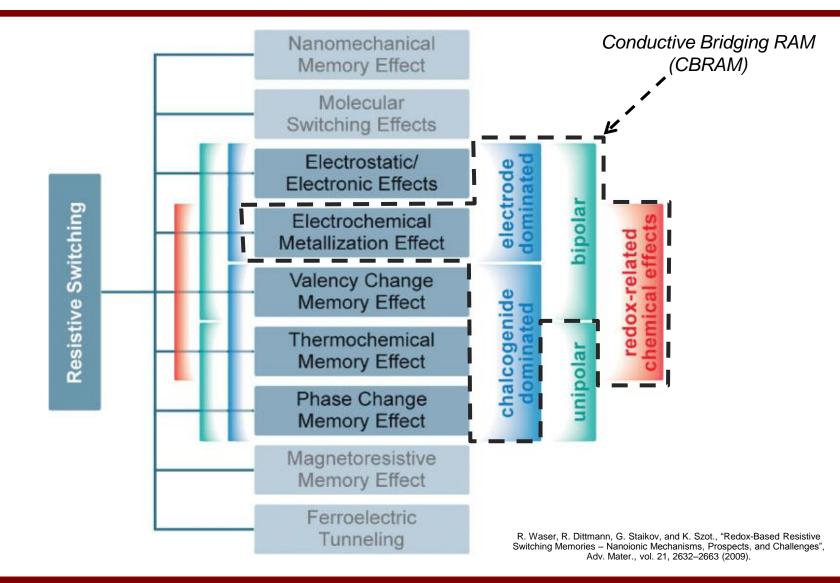
- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions

Moore's Law


Candidates for Next Generation NVM

Ferroelectric RAM (FeRAM)

Magnetic RAM (MRAM)


• Phase Change Memory (PCM)

Resistance Change RAM (RRAM)
(metal oxides)

Resistance Change Memory Taxonomy

Example of Electrochemical Memory Implementations


Table I. Summary of reported electrochemical metallization cells employing either Ag or Cu as an active electrode (AE) metal and various electrolytes and counter electrode (CE) metals.

Electrolyte	Active electrode (AE) metals						
	Ag	Cu					
Ge _x S _y	W ^{11–19}	W ¹⁵					
Ge _x Se _y	W11,16,20-23 Pt24 Ni16,25-27	W ¹⁵					
Ge-Te	TiW ²⁸	TaN ²⁹					
Ge-Sb-Te	Mo ³⁰						
As-S	Au ²¹						
Zn _x Cd _{1-x} S	Pt ^{32,33}						
Cu _z S		Pt ^{34,35} Ti ^{36,37}					
Ta ₂ O ₅		Pt ³⁸⁻⁴⁰ Ru ⁴¹					
SiOz	Co ⁴²	W43,44 Pt10 Ir45					
WO ₃	W ⁴³	W ^{43,46}					
TiO ₂	Pt ^{47,48}						
ZrO ₂	Au ⁴⁹						
MSQ	Pt ^{s0,51}						
GdO _x		W52					
a-Si	Poly-Si ⁵³⁻⁵⁵ Cr ⁵⁶						
Ge _x Se _y /SiO _x		Pt ⁵⁷					
Ge _x Se _y /Ta ₂ O ₅		W ⁵⁸					
Cu _x S/Cu _x O		Pt ^{s9}					
Cu _x S/SiO ₂		Pt ^{s9}					

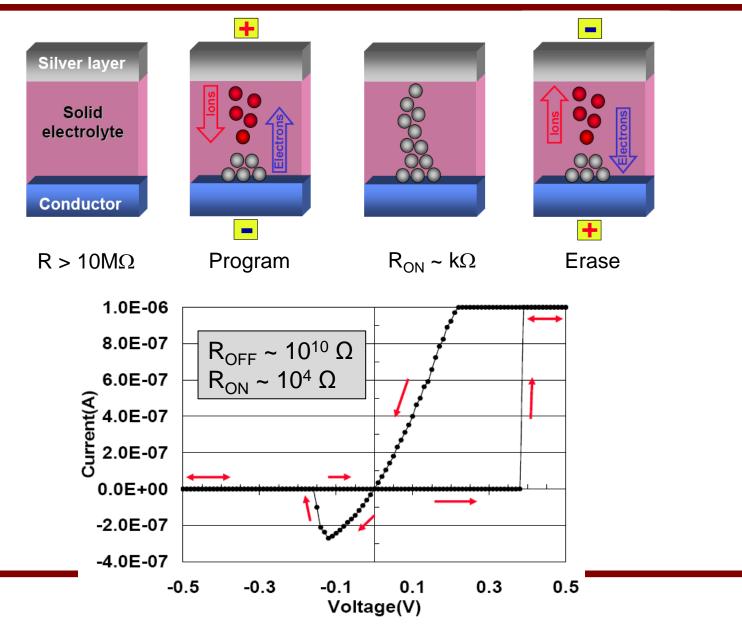
Electrolyte and CE materials are indicated in each row. For bilayer electrolytes, AE would be placed to the left of the electrolyte (e.g., Cu/A/B/Pt for a cell with a Cu AE metal and A/B bilayer electrolyte). Information compiled by John R. Jameson, Adesto Technologies Corp. Reprinted with permission from Reference 9. ©2011, IOP Publishing.

Table II. Summary of key performance data reported to date in electrochemical metallization arrays.										
Material Systems	Cu/Cu _z S/Ti	Cu-Te/GdO,/W	Ag/Ge _x S _y /W	Ag/Ge_xS_y or Ge_xSe_y						
Reference	Kaeriyama et al.37	Aratani et al.52	Gopalan et al. ¹⁹	Dietrich et al.63						
Array Size Tested	1 kbit	4 kbit	384 kbit, 1 Mbit	2 Mbit						
Technology Node	250 nm	180 nm	180 & 130 nm	90 nm						
SET Condition	1.1 V/5–32 μs	3 V/5 ns/110 μA	1.5 V/250 ns/30 µA	\geq 0.6 V/ \leq 50 ns/10 μ A						
RESET Condition	1.1 V/5–32 μs	1.7 V/1 ns/125 μA	0.6 V/12 ms/20 µA	${\leq}0.2$ V/ ${\leq}50$ ns/20 ${\mu}A$						
Endurance	10 ² -10 ⁴	107	105	10 ⁶						
Retention (measured)	10 ² s @ 35 mV	100 hours @ 130°C	24 hours @ 110°C	10º s @ 70°C						
Retention (projected)	3 months	10 years	10 years @ 70°C	10 years						

All arrays utilized 1T1R (one transistor for device selection and one resistive switching element) architecture. Compiled with information from Chen⁸² with the addition of data recently reported for Ag/Ge_xS_yW cells.¹⁹

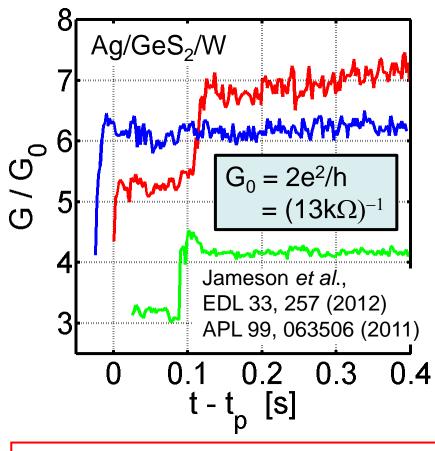
Patents by Category:Ionic/Electrolytic204Metal Oxide169Molecular/Polymer74Phase Change961Other/Unknown1256

Figure 4 RRAM Patents per year [13]


What is it Made Of?

1]			Anode CBRAM uses 25% of all the elements										2			
H 1.0079				Ele	Electrolyte									He 4.0026			
3 Li 6.941	4 Be 9.0122			Cathode CBRAM / CMOS Build uses								8 O 15.999	9 F 18.998	10 Ne 20.180			
11 Na 22.990	12 Mg 24.305			~75% of all the elements ! More than Moore in action.								13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 CI 35.453	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 SC 44.956	22 Ti 47.867	Ti V Cr Mn Fe Co Ni Cu Zn						31 Ga 69.723	32 Ge 72.61	33 AS 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80		
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	Nb Mo Tc Ru Rh Pd Ag Cd						49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29	
55 CS 132.91	56 Ba 137.33	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 PO 209	85 At 210	86 Rn 222

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb
138.91	140.12	140.91	144.24	145	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	NO
227	232.04	231.04	238.03	237	244	243	247	247	251	252	257	258	259


Operating Principle of a CBRAM Cell

adesto®

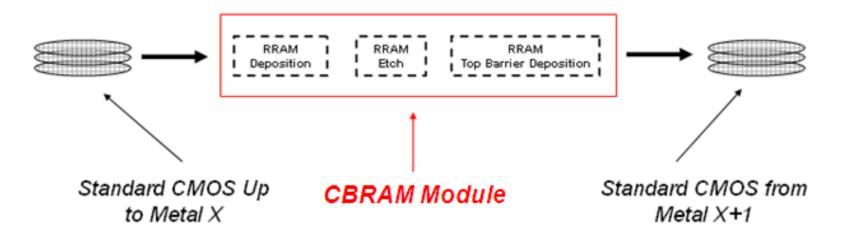
10

CBRAM cells as quantum point contacts (QPCs)

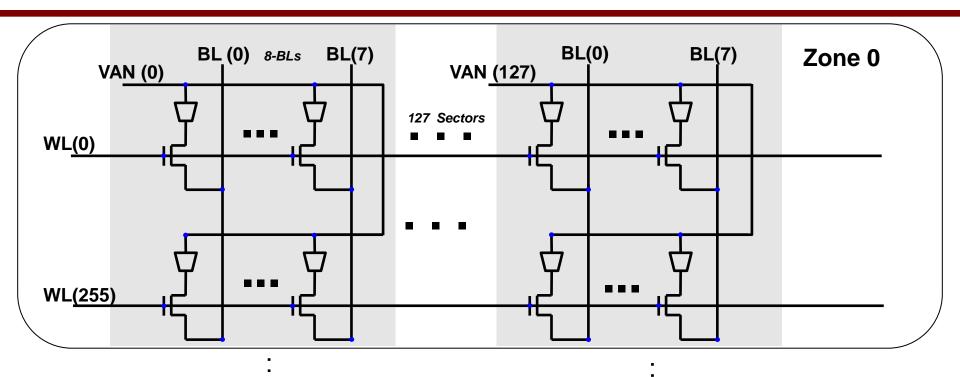
Similar observations in other systems:

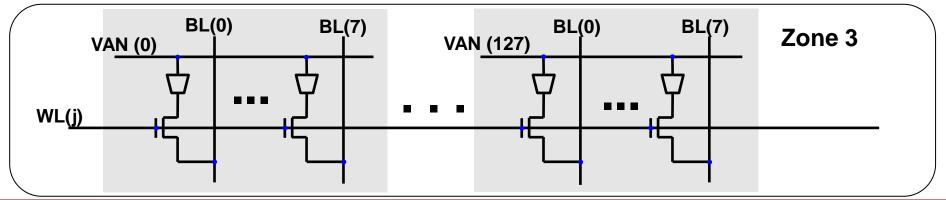
Gap: Terabe *et al.*, Nature 433, 48 (2005) **Non-gap:** See paper for 8 refs from 2012/13

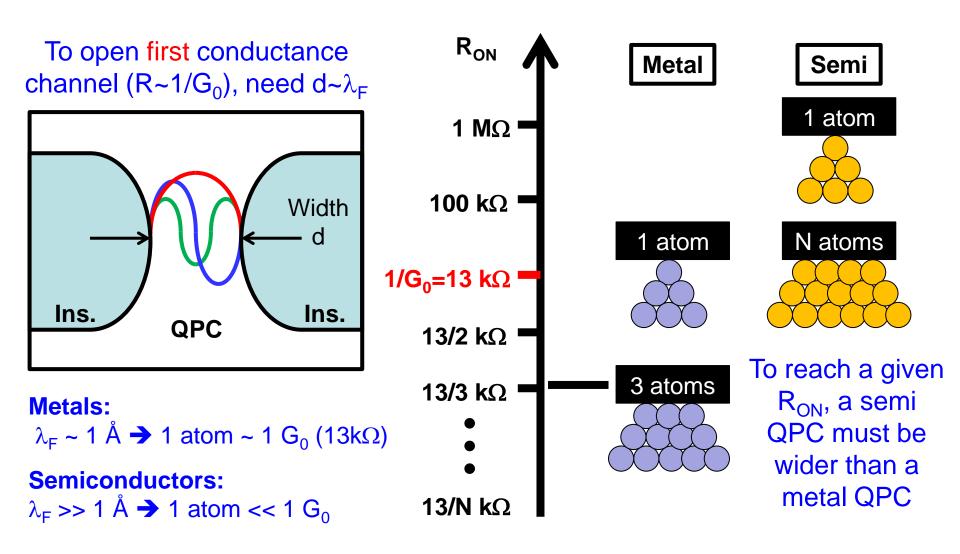
Physical picture is atomic: 1 atom \approx 1G₀ 2 atoms≈2G₀ Not continuum: ρ Summary of QPC-related device behavior: "Conductive bridge random access memory (CBRAM) technology", Jameson & Van Buskirk - in -Advances in nonvolatile memory and storage technology, ed. Y. Nishi, Woodhead Pub.



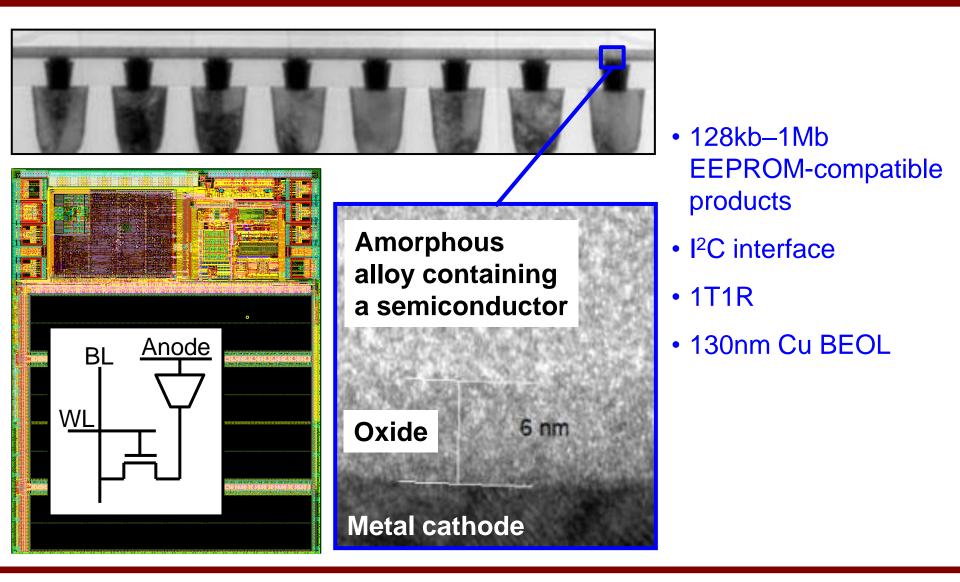
- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions


CMOS Integration

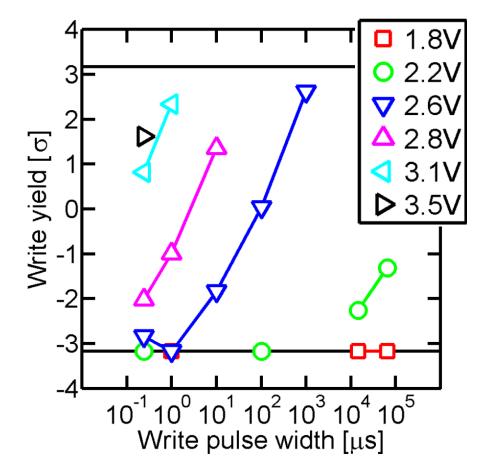

- Adesto has successfully completed baseline integration flow in a standard CMOS Logic fab
- Adesto's process integration enables the introduction of CBRAM memory stack into CMOS BEOL without affecting the line
- Over 8000 wafers processed so far without any issue on background CMOS process



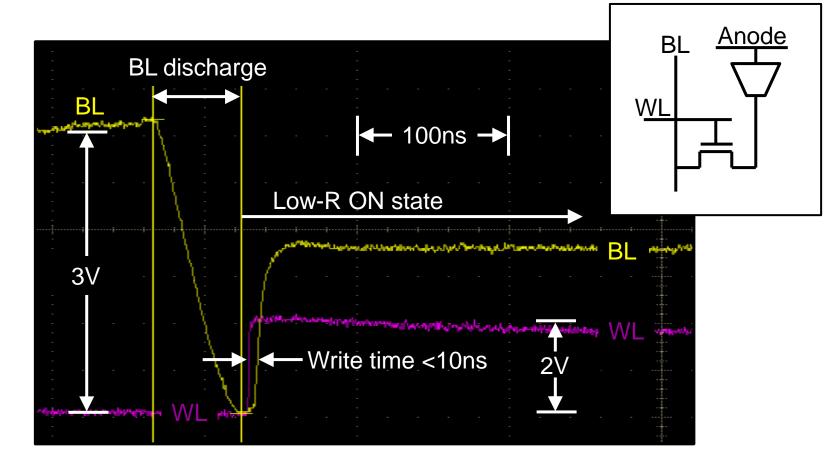
1Mb Array Architecture and Diagram



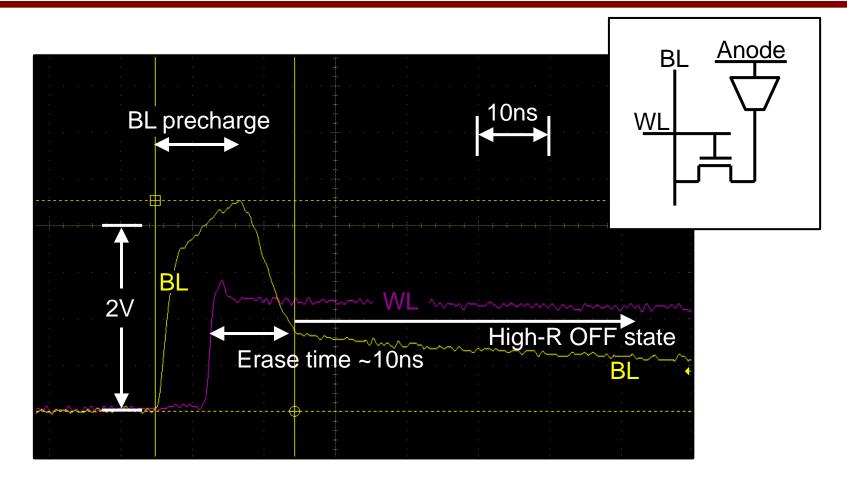
CBRAM: Cell Structure and Architecture



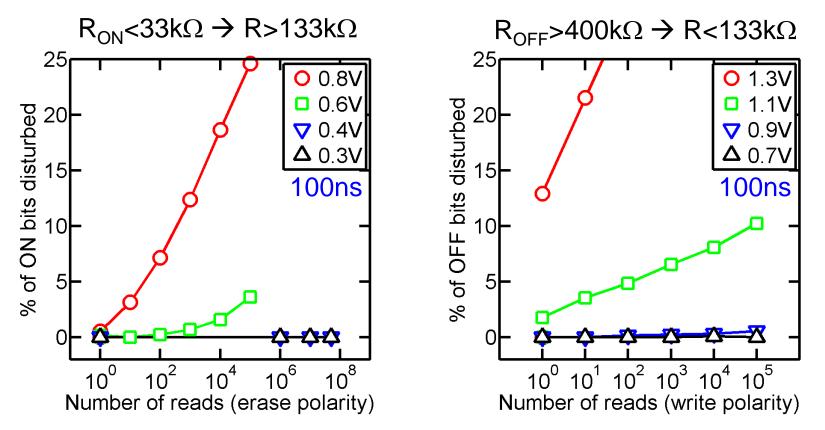
- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions


CBRAM: Forming

- In general, first write is slower than subsequent writes
- But, high yield still achievable with forming pulse of $10 \mu \text{s}/3 \text{V}$


CBRAM: Write Speed

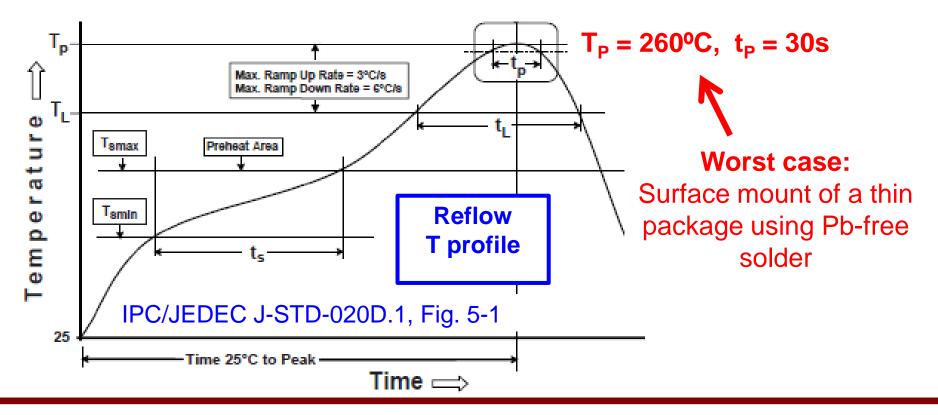
- Write speed depends "exponentially" on voltage
- At a write voltage of 3V, sub-10ns writes are possible
- Typical program uses ~2V/100ns-1us


CBRAM: Erase Speed

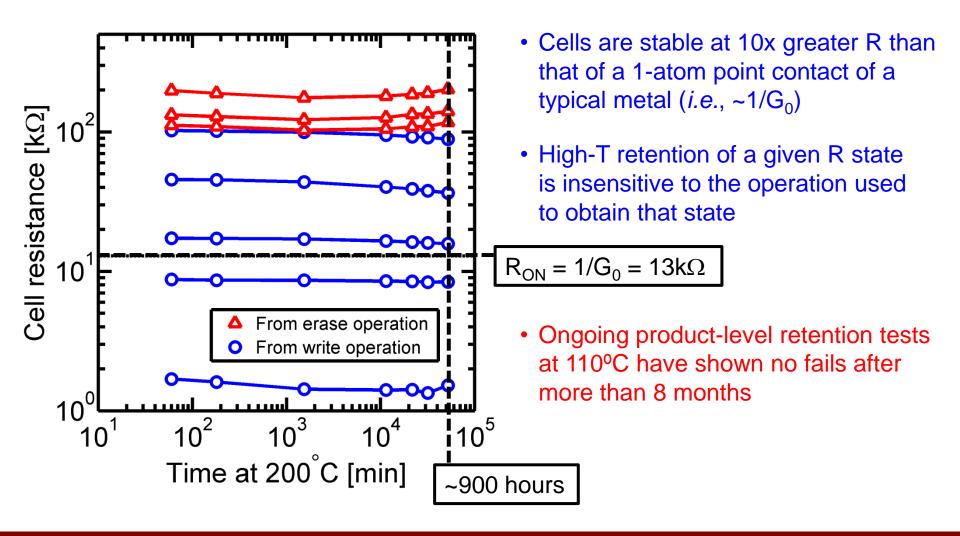
- Above a voltage of ~2V, sub-10ns erases are also possible
- Typical erase uses ~1.5V/100ns-1us

CBRAM: Immunity to Read Disturbs

- The exponential dependence of speed on voltage allows read disturbs to be avoided
- Typical read uses ~0.2V/100ns

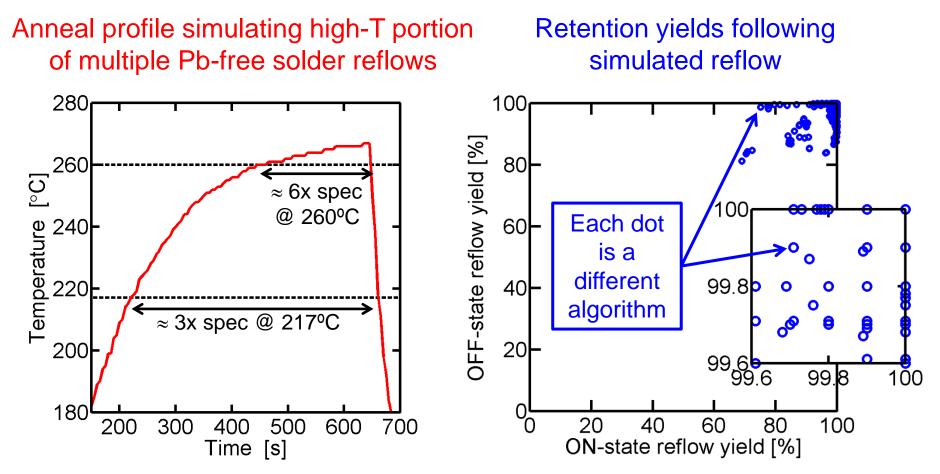


- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions



The Need for High-T Retention in Emerging Memories

- Operational requirement for some applications (e.g., automotive)
- Other applications (*e.g.*, code storage) utilize wafer-level or package-level programming, followed by solder reflow for board mount
- Low-density demonstrations to prove out new technology



CBRAM: Retention through Simulated Solder Reflow

- Excellent retention is achievable at reflow-like times and temperatures
- Algorithm design is important, even with suitable materials system

- Introduction to Adesto Technologies
- Introduction to CBRAM
- CBRAM from Adesto
 - General characteristics
 - High-T retention
 - Radiation tolerance
- Conclusions

CBRAM – Robust in Extreme Environments

Recent News -

Collaboration with Adesto Technologies and Nordion Confirms Gamma Irradiation Tolerance of CBRAM® Non-Volatile Memory

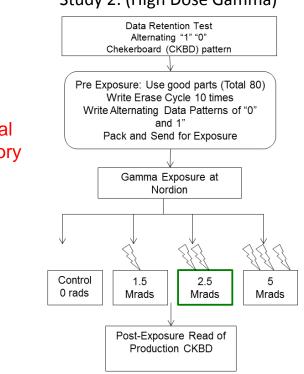
Wednesday, October 16, 2013

Capability Opens New Market Opportunities to Ultra-Low Power Memory Products

Sunnyvale, CA, October 16, 2013 -- Adesto Technologies, a memory solutions provider delivering innovative products for code and data storage applications, and Nordion, with global expertise in the design and construction of commercial gamma irradiation systems, today announced the successful completion of gamma irradiation testing of Adesto's CBRAM non-volatile memory products. The results demonstrated CBRAM's tolerance for gamma testing with device function and data storage surviving gamma radiation exposure...

"Gamma irradiation is a proven technique for the sterilization of single use medical devices and other consumer products that require strict microbial decontamination." — Emily Craven, Manager of Sterilization Science at Nordion

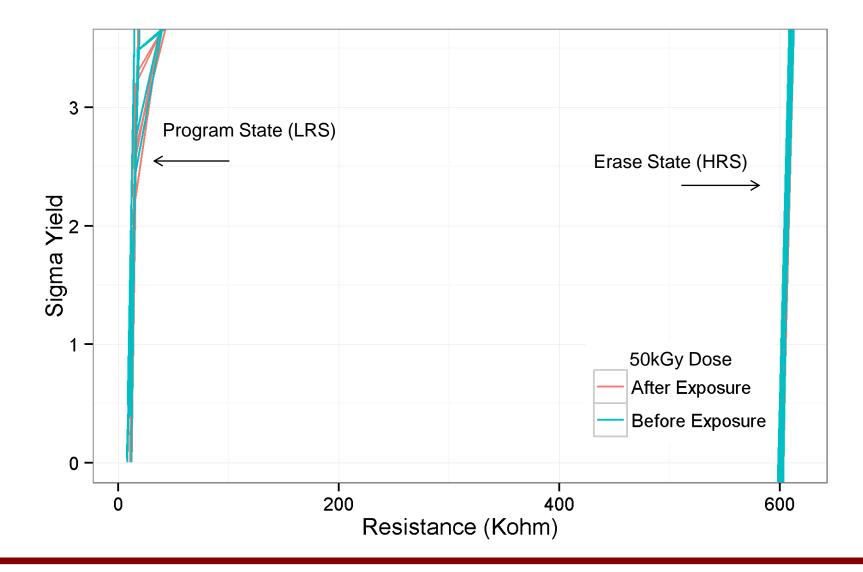
CBRAM® Gamma Tolerance Study


Study 1: (vs. Conventional Flash)

Study 2: (High Dose Gamma)

Device	Technology	DUT ID	Gamma Dose (krad Si)	Data Loss (# bit errors)	Result	
AT25F512B	Floating Gate	1	447	859	FAIL	
AT25F512B	Floating Gate	2	447	6519	FAIL	Conventional
AT25F512B	Floating Gate	3	131	955	FAIL	Flash Memory Devices
AT25F512B	Floating Gate	4	131	4	FAIL	Deviced
RM24EP128KS	CBRAM	1	447	0	PASS	
RM24EP128KS	CBRAM	2	447	0	PASS	CBRAM
RM24EP128KS	CBRAM	3	131	0	PASS	Devices
RM24EP128KS	CBRAM	4	131	0	PASS	

• Tests performed by ASU


CBRAM had no failure even at twice the normal dose used for Gamma Sterilization

- Tests performed by Nordion Leading provider of isotopes and radiation therapy services to the medical and health care industry
- Results : CBRAM PASSED Data Retention Test

CBRAM Cell Tolerance to Gamma Radiation – Resistance Distribution

- Field of emerging memory is diverse and vibrant
- CBRAM has been a leading candidate, and has recently made significant new advancements
- CBRAM has achieved high-T retention by using a combination of materials engineering & a properly designed algorithm

→ Opportunities for apps w/ high-T operation or requiring solder reflow

- Tolerance to gamma radiation has also been achieved
 - \rightarrow Opportunities for medical or aerospace applications

