

NANOMATERIALS FOR ENERGY APPLICATIONS

Latika Menon

Nov. 9, 2013

Associate Professor Department of Physics Northeastern University Boston, MA 02115

Founder Menon Laboratories, Inc. Somerville, MA 02143

Titania Nanotubes

Nanoporous Alumina

GaN Nanowires

Filtration Solar Cells Titania Nanotubes Catalysis Photocatalysis

Nanotubes per in²

$$\approx \frac{1}{4} \cdot 10^{12}$$

$$=\frac{1}{4}$$
 trillion

=250000000000

Short Nanotubes

Ultra-high Aspect ratio tubes

Quasi-Periodic Arrays

Advanced Materials, 19, 946 (2007); JMR, 22, 1624 (2007); JES, 155, E7 (2008);

Patent# 20100024879

Dye-Sensitized Solar Cells

Increased light absorption

Lower resistance to carrier flow

Increased surface area

Better Photoamodes

Flexible

AIIPW/IBIIPV

Lin et al. Small, 2011

Photocatalytic Anodes for H₂ Generation

$$\eta_c = \frac{I_{ph} \left(1.23 \text{V} - V_{\text{bias}} \right)}{I_0}$$

Energy and Environmental Science, 2010, 3, 427

Au-manoparticle attached Titamia

Catalysis

Namotube Powders

Filtration Pellets

Membranes

Filtration Market: ~\$8.9B (US 2010)

- Ultrafiltration Market: ~\$1.2B
- Biological and Chemical Separation: ~\$0.7B
- Treatment of Produced Water: ~\$0.86B

Today's Needs for Clean Water:

- Shortage of Water Resources
- Oil Contamination Due to Drilling and Fracking
- Toxic Elements Removal (e.g. Arsenic)
- Antimicrobial Treatment

Produced Water Facts

- **15-20B Barrels/Year** in US (50B Worldwide)
- Water-to-Oil Ratio (WOR)

7:1 US (3:1 Worldwide)

 Companies Pay \$3-\$12/Barrel of Produced Water

Filtration Industry Pain Points

High-Temperature Robustness

Non-Corrosive in Adverse pH Solutions

Less Susceptible to Fouling

Tight Size Control (<100nm)

Alleviate High Pressure Requirement

Our Material

Melting temperature: 1800°C

Strongly resistant in the 0-14 pH range

Capability for Selective Filtration

Tube diameter control down to 20 nm

Naturally Porous Membrane (High Active Surface Area)

Very low production costs

	Commercial Silicon Carbide	Our Technology
Substrate Material	SiC	No substrate
Selective layer material	SiC	TiO ₂
Porosity	40%	60%, easy to control
Permeability	High because of high porosity and hydrophilicity	High because of high porosity and hydrophilicity
Temperature Tolerance	Up to 800°C in atmospheric air	Melting point: 1800°C
Chemical resistance	Resistant in full pH range 0-14	Resistant in full pH range 0-14
Max Cl concentration	Unlimited	Most likely unlimited
Solvents	Completely Stable	Stable
Oxidizers	Any concentration	Already an oxide
Pore size	0.04 – 3 μm	TBD (~ 0.1 μm)
Flux Rate	$3 - 12 \text{ m}^3/(\text{m}^2\text{h})$	1.2 m ³ /(m ² h)

Nanowire Energetics Metamaterials

18

Metal-Dielectric Composites

Improved Absorption Wavelength Selectivity

Light-weight, single-use,
MIEMS-compatible energy sources

Ignition

LЕФ

Nanopores in Si

2 (2004)

GaN Nanowires

Multifunctional devices

Solid State Lighting

GaN Nanowires

Epitaxial GaN

Journal of Materials Chemistry C

Materials for optical and electronic devices

www.rsc.org/MaterialsC

COMMUNICATION

Moneesh Upmanyu, Latika Menon et al. Vapor-liquid-solid growth of serrated GaN nanowires; shape selection driven by

Serrated GaN

Enhanced Surface Area

Northeastern University Research Funding

- NSF (CAREER, DMR, ECCS, I-CORPS)
- Airforce, Army, ONR

Lab Highlights

- Over 5M in funding to date
- Graduated 6PhDs and 4MS
- Over 40 papers on nanomaterials
- Outreach and mentoring

Menon Laboratories, Inc.

- Incorporated in March 2013
- MassCEC funding
- Oil and Gas Company funding