NANOMATERIALS FOR ENERGY APPLICATIONS

Latika Menon
Nov. 9, 2013

Associate Professor
Department of Physics
Northeastern University
Boston, MA 02115

Founder
Menon Laboratories, Inc.
Somerville, MA 02143
Titania Nanotubes

Nanoporous Alumina

GaN Nanowires
Titania Nanotubes

- Solar Cells
- Filtration
- Catalysis
- Photocatalysis
Nanotubes per in2

$\approx \frac{1}{4} \cdot 10^{12}$

$= \frac{1}{4}$ trillion

$= 2500000000000$
Short Nanotubes

Ultra-high Aspect ratio tubes

Quasi-Periodic Arrays

Advanced Materials, 19, 946 (2007); JMR, 22, 1624 (2007); JES, 155, E7 (2008); Patent# 20100024879
Dye-Sensitized Solar Cells
Increased light absorption

Increased surface area

Lower resistance to carrier flow
Flexible AIPV/BIPV

Lin et al. Small, 2011
Photocatalytic Anodes for H_2 Generation
\[\eta_e = \frac{I_{ph} \left(1.23V - V_{bias}\right)}{I_0} \]
Au-nanoparticle attached Titania

Catalysis

JMC, 19, 4483 (2009)
Nanotube Powders

Membranes

Filtration Pellets
Filtration Market: ~$8.9B (US 2010)
- Ultrafiltration Market: ~$1.2B
- Biological and Chemical Separation: ~$0.7B
- Treatment of Produced Water: ~$0.86B

Today’s Needs for Clean Water:
- Shortage of Water Resources
- Oil Contamination Due to Drilling and Fracking
- Toxic Elements Removal (e.g. Arsenic)
- Antimicrobial Treatment

Produced Water Facts
- 15-20B Barrels/Year in US (50B Worldwide)
- Water-to-Oil Ratio (WOR)
 - 7:1 US (3:1 Worldwide)
- Companies Pay $3-$12/Barrel of Produced Water
Filtration Industry Pain Points

High-Temperature Robustness
Non-Corrosive in Adverse pH Solutions
Less Susceptible to Fouling
Tight Size Control (<100nm)
Alleviate High Pressure Requirement

Our Material

Melting temperature: 1800°C
Strongly resistant in the 0-14 pH range
Capability for Selective Filtration
Tube diameter control down to 20 nm
Naturally Porous Membrane (High Active Surface Area)
Very low production costs
<table>
<thead>
<tr>
<th>Substrate Material</th>
<th>Commercial Silicon Carbide</th>
<th>Our Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective layer material</td>
<td>SiC</td>
<td>TiO₂</td>
</tr>
<tr>
<td>Porosity</td>
<td>40%</td>
<td>60%, easy to control</td>
</tr>
<tr>
<td>Permeability</td>
<td>High because of high porosity and hydrophilicity</td>
<td>High because of high porosity and hydrophilicity</td>
</tr>
<tr>
<td>Temperature Tolerance</td>
<td>Up to 800°C in atmospheric air</td>
<td>Melting point: 1800°C</td>
</tr>
<tr>
<td>Chemical resistance</td>
<td>Resistant in full pH range 0-14</td>
<td>Resistant in full pH range 0-14</td>
</tr>
<tr>
<td>Max Cl concentration</td>
<td>Unlimited</td>
<td>Most likely unlimited</td>
</tr>
<tr>
<td>Solvents</td>
<td>Completely Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>Oxidizers</td>
<td>Any concentration</td>
<td>Already an oxide</td>
</tr>
<tr>
<td>Pore size</td>
<td>0.04 – 3 μm</td>
<td>TBD (~ 0.1 μm)</td>
</tr>
<tr>
<td>Flux Rate</td>
<td>3 – 12 m³/(m²h)</td>
<td>1.2 m³/(m²h)</td>
</tr>
</tbody>
</table>
Low cost nanotechnologies

Nanoporous Alumina

Nanowire Energetics

Metamaterials
Metal-Dielectric Composites

Improved Absorption Wavelength Selectivity

Fe$_2$O$_3$ Oxidizer

Al Fuel

Light-weight, single-use, MEMS-compatible energy sources

Ignition

Au Nanodots

Low-Cost, Scalable Nanotechnology

Nanopores in Si

JES, 151, C492 (2004)
GaN Nanowires

- Multifunctional devices
- Solid State Lighting
GaN Nanowires

- Polar
- Semi-Polar
- Non-Polar

(a)

(b)

5 μm

2 μm
Epitaxial GaN
Northeastern University Research Funding
- NSF (CAREER, DMR, ECCS, I-CORPS)
- Airforce, Army, ONR

Lab Highlights
- Over 5M in funding to date
- Graduated 6PhDs and 4MS
- Over 40 papers on nanomaterials
- Outreach and mentoring

Menon Laboratories, Inc.
- Incorporated in March 2013
- MassCEC funding
- Oil and Gas Company funding