

4D-S Ltd

Abstract

- 4DS has developed a robust ReRAM material system, MOHJO™:
 - High cycle life
 - Low power dissipation
 - Good data retention
 - Reduced manufacturing time and cost
- MOHJO[™] is implemented as a back end process atop standard CMOS flow
- MOHJO[™] has a low current reset state that enables large blocks of memory to be erased enabling a number of interesting applications
- MOHJO™ can be particularly useful in SSD where it can result in a 100x reduction of energy consumption.

Technology – Key Attributes

4DS' MOHJO[™] memory is high speed, non-volatile, low power, low cost and is able to be produced using existing semiconductor manufacturing equipment

LOW COST	 Produced using +1 to 4 mask steps when combined with standard CMOS process (as compared to +16 to 20 mask steps for FLASH) for the memory core. Scalable and repeatable proprietary wafer process for mass production. 	EXISTING FAB EQUIPMENT / PROCESSES	 Simple integration into fabs, process steps utilizes established fabrication equipment and processes. Proprietary process is implementable as customized module on existing fabrication tools.
LOW POWER	 Low voltage operation and low current, making it attractive for a variety of applications 	DENSITY	 High density 4F² with diode/6F² with transistor
LOW TEMPERATURE	 Memory is formed with a proprietary low temperature process similar to CMOS back end of line (BEOL) temperatures. 	LONG CYCLE LIFE	• 10 ^{^9}
HIGH SPEED	Fast Read/Write	RELIABILITY	10 year data retention
SCALABILITY	 Tested at 30nm, project down to 10nm and below. 	CMOS COMPATIBLE	Process is CMOS compatible.

Metal Oxide Hetero-Junction Operation (MOHJO™)

Technology – Relative Comparison

4DS' MOHJOTM memory compares very favourably to the best characteristics of competing solutions

r T	Flash	STT	PCM	МОЈНО
Density (F ²)	1-4	20-60	4-16	4/(# layers)
Energy per bit (pJ)	100	0.1-2.5	2-2.5	0.2-3
Read Time (ns)	100000	10-35	10-50	10-50
Write Time (ns)	100000	10-90	50-500	10-50
Endurance	10^4	10^ ¹⁵	10^9	10 ^{^9}
Retention	Years	Years	Years	Years

Technology – Relative Positioning

Table ERD9 Target Device and System Specifications for SCM						
	Benchmark [A]		Target		$MOHJO^{TM}$	
Parameter	HDD [B]	NAND flash [C]	DRAM	Memory-type SCM	Storage-type SCM	
Read/Write latency	3-5 ms	${\sim}100\mu s$ (block erase ${\sim}1$ ms)	<100 ns	<100 ns	1-10μs	10ns to 50ns
Endurance (cycles)	unlimited	$10^4 - 10^5$	unlimited	>109	>106	>109
Retention	>10 years	~10 years	64 ms	>5 days	~10 years	~10 years
ON power (W/GB)	~0.04	~0.01-0.04	0.4	<0.4	<0.04	< 0.04
Areal density	$\sim 10^{11} \text{ bit/cm}^2$	$\sim 10^{10} \text{ bit/cm}^2$	$\sim 10^9 \text{bit/cm}^2$	$\sim 10^{10}$ bit/cm ²	$\sim 10^{10}$ bit/cm ²	$\sim 10^{10}$ bit/cm ²
Cost (\$/GB)	0.1	2	10	<10	<3-4	<1

Notes for Table ERD9:

The International Technology Roadmap for Semiconductors, 2011 Edition (latest)

[[]A] The benchmark numbers are representative values, which may have significant variations in specific products

[[]B] Enterprise class

[[]C] Single-level cell (SLC)

Advantages of Asymmetrical Hysteresis

- Extremely low power operation on the reset side
- Low power operation enables a bulk or block erase feature; which in Flash memory type applications would provide a drop in, higher performance replacement using current flash controllers.
- Low power bulk erase is also highly desirable feature in security applications where the data may need to be wiped out quickly.
- Of note the bulk erase is a feature not a requirement as in many current nonvolatile memories. Both the Set and Reset operations can be performed on a byte by byte basis.

Implementation 1: Cache/Working memory

DRAM/ReRAM Hybrid Cache

Graphics borrowed from Qureshi HPAC 2009

Implementation 2: SSD File Storage

- Utilizing ReRAM to replace FLASH in SSD file storage
- 4DS ReRAM performance exceeds high end flash

	Flash	MOJHO TM
1.Voltage:	< 15V	Better
2.Endurance:	> 10 ⁴ W/E cycles	Better
3.Scalability:	< ~18 nm, 3D stackable	Comparable
4.W/E time:	< 100 µs	Better
5.Retention:	> 10 years	Comparable

In spite of the excellent potential this transistion will take a while due to the billons invested in Flash infrastructure

4DS MOHJO™ Embedded Memory

- Lower cost and higher performance than embedded flash with the updating capability that OTP memories lack
- Optimizes processor speed and reduces power consumption of electronic devices.
- High Security applications
- The memory would be implemented in a 1T/1R configuration for embedded applications instead of 1D/1R to reduce the design complexity on the smaller embedded memories.

High Security in Embedded Configuration

- One of the major advantages of embedding memory is improved security due to the elimination of external and easily accessible bus lines.
- Once the memory is embedded the next level of security is determined by how easily a hacker can determine what is inside the memory.
- The 4DS MOHJOTM memory is very secure.
 - Extremely low power and high speed makes thermal detection extremely difficult.
 - No visible difference between 1's and 0's in de-processing
 - No physical links or other features.
 - Extremely low voltage contrast in the array.