4D-S Ltd #### **Abstract** - 4DS has developed a robust ReRAM material system, MOHJO™: - High cycle life - Low power dissipation - Good data retention - Reduced manufacturing time and cost - MOHJO[™] is implemented as a back end process atop standard CMOS flow - MOHJO[™] has a low current reset state that enables large blocks of memory to be erased enabling a number of interesting applications - MOHJO™ can be particularly useful in SSD where it can result in a 100x reduction of energy consumption. ## **Technology – Key Attributes** **4DS**' MOHJO[™] memory is high speed, non-volatile, low power, low cost and is able to be produced using existing semiconductor manufacturing equipment | LOW
COST | Produced using +1 to 4 mask steps when combined with standard CMOS process (as compared to +16 to 20 mask steps for FLASH) for the memory core. Scalable and repeatable proprietary wafer process for mass production. | EXISTING FAB
EQUIPMENT /
PROCESSES | Simple integration into fabs, process steps utilizes established fabrication equipment and processes. Proprietary process is implementable as customized module on existing fabrication tools. | |--------------------|---|--|---| | LOW
POWER | Low voltage operation and low current,
making it attractive for a variety of
applications | DENSITY | High density 4F² with diode/6F² with
transistor | | LOW
TEMPERATURE | Memory is formed with a proprietary low
temperature process similar to CMOS
back end of line (BEOL) temperatures. | LONG CYCLE
LIFE | • 10 ^{^9} | | HIGH SPEED | Fast Read/Write | RELIABILITY | 10 year data retention | | SCALABILITY | Tested at 30nm, project down to 10nm
and below. | CMOS
COMPATIBLE | Process is CMOS compatible. | #### Metal Oxide Hetero-Junction Operation (MOHJO™) ## **Technology – Relative Comparison** **4DS**' MOHJOTM memory compares very favourably to the best characteristics of competing solutions | r
T | Flash | STT | PCM | МОЈНО | |---------------------------|--------|-------------------|--------|------------------| | Density (F ²) | 1-4 | 20-60 | 4-16 | 4/(# layers) | | Energy per bit (pJ) | 100 | 0.1-2.5 | 2-2.5 | 0.2-3 | | Read Time (ns) | 100000 | 10-35 | 10-50 | 10-50 | | Write Time (ns) | 100000 | 10-90 | 50-500 | 10-50 | | Endurance | 10^4 | 10^ ¹⁵ | 10^9 | 10 ^{^9} | | Retention | Years | Years | Years | Years | ## **Technology – Relative Positioning** | Table ERD9 Target Device and System Specifications for SCM | | | | | | | |--|---------------------------------|---|-----------------------------|------------------------------------|------------------------------------|------------------------------------| | | Benchmark [A] | | Target | | $MOHJO^{TM}$ | | | Parameter | HDD [B] | NAND flash [C] | DRAM | Memory-type
SCM | Storage-type
SCM | | | Read/Write latency | 3-5 ms | ${\sim}100\mu s$ (block erase ${\sim}1$ ms) | <100 ns | <100 ns | 1-10μs | 10ns to 50ns | | Endurance (cycles) | unlimited | $10^4 - 10^5$ | unlimited | >109 | >106 | >109 | | Retention | >10 years | ~10 years | 64 ms | >5 days | ~10 years | ~10 years | | ON power (W/GB) | ~0.04 | ~0.01-0.04 | 0.4 | <0.4 | <0.04 | < 0.04 | | Areal density | $\sim 10^{11} \text{ bit/cm}^2$ | $\sim 10^{10} \text{ bit/cm}^2$ | $\sim 10^9 \text{bit/cm}^2$ | $\sim 10^{10}$ bit/cm ² | $\sim 10^{10}$ bit/cm ² | $\sim 10^{10}$ bit/cm ² | | Cost (\$/GB) | 0.1 | 2 | 10 | <10 | <3-4 | <1 | Notes for Table ERD9: The International Technology Roadmap for Semiconductors, 2011 Edition (latest) [[]A] The benchmark numbers are representative values, which may have significant variations in specific products [[]B] Enterprise class [[]C] Single-level cell (SLC) #### **Advantages of Asymmetrical Hysteresis** - Extremely low power operation on the reset side - Low power operation enables a bulk or block erase feature; which in Flash memory type applications would provide a drop in, higher performance replacement using current flash controllers. - Low power bulk erase is also highly desirable feature in security applications where the data may need to be wiped out quickly. - Of note the bulk erase is a feature not a requirement as in many current nonvolatile memories. Both the Set and Reset operations can be performed on a byte by byte basis. # **Implementation 1: Cache/Working memory** #### **DRAM/ReRAM Hybrid Cache** Graphics borrowed from Qureshi HPAC 2009 ### Implementation 2: SSD File Storage - Utilizing ReRAM to replace FLASH in SSD file storage - 4DS ReRAM performance exceeds high end flash | | Flash | MOJHO TM | |----------------|------------------------------|----------------------------| | 1.Voltage: | < 15V | Better | | 2.Endurance: | > 10 ⁴ W/E cycles | Better | | 3.Scalability: | < ~18 nm, 3D stackable | Comparable | | 4.W/E time: | < 100 µs | Better | | 5.Retention: | > 10 years | Comparable | In spite of the excellent potential this transistion will take a while due to the billons invested in Flash infrastructure ## **4DS MOHJO™ Embedded Memory** - Lower cost and higher performance than embedded flash with the updating capability that OTP memories lack - Optimizes processor speed and reduces power consumption of electronic devices. - High Security applications - The memory would be implemented in a 1T/1R configuration for embedded applications instead of 1D/1R to reduce the design complexity on the smaller embedded memories. ### **High Security in Embedded Configuration** - One of the major advantages of embedding memory is improved security due to the elimination of external and easily accessible bus lines. - Once the memory is embedded the next level of security is determined by how easily a hacker can determine what is inside the memory. - The 4DS MOHJOTM memory is very secure. - Extremely low power and high speed makes thermal detection extremely difficult. - No visible difference between 1's and 0's in de-processing - No physical links or other features. - Extremely low voltage contrast in the array.