

Exploring Natural and Bio-inspired Photonic Nanostructures as Gas Sensors: From Scientific Curiosity to Unexpected Discoveries and to Societal Impact

> Radislav A. Potyrailo GE Vernova Advanced Research Center

IEEE MEMS & Sensors SFBA Chapter Meeting October 2, 2024

Sensors Council

Sensors Council is an IEEE Technical Council formed in 1999.

Sensors Council is an IEEE entity devoted to sensors, theory, design, fabrication, manufacturing, reliability and applications of devices for sensing and transducing physical, chemical, and biological phenomena, with emphasis on the electronics, physics and reliability aspects of sensors and integrated sensor-actuators.

Conferences

Publications

Livi

Standards

Q Education

Technical Activities

Networking

About the IEEE Sensors Council

SENSORS Conference Locations

3-year geographical rotation

Visit ieee-sensors.org/conferences for more info on all of the Sensors Council's upcoming conferences and locations.

26 Member Societies

Visit ieee-sensors.org/membership for a complete director of member societies.

45+ Section Chapters 65+ Student Branch Chapters

Visit ieee-sensors.org/chapters for a full list of chapters and chair contacts.

Conferences and Events

Publications

IEEE Sensors Journal

- Established 2001
- ► 3M downloads in 2023
- Impact factor 4.325

IEEE Sensors Letters

- Established in 2017
- Rapid publication of short papers

Co-Sponsored Publications

- IEEE Journal on Flexible Electronics
- IEEE Internet of Things Journal
- ► IEEE Trans. on Agrifood Electronics
- IEEE Journal of Indoor and Seamless Positioning and Navigation
- ▶ IEEE Trans. on Radar Systems
- ▶ IEEE Trans. on Big Data
- ▶ IEEE Trans. on GAMES

Newsletter

- Published quarterly
- ► Reach of over 25,000 subscribers

IEEE Sensors Reviews

Established in 2024

IEEE Journal of Selected Areas in Sensors (JSAS)

Established in 2023

Website

ieee-sensors.org

Facebook facebook.com/IEEESensorsCouncil

X (Twitter) @SensorsCouncil

LinkedIn

linkedin.com/company/ieee-sensors-council

YouTube

Bit.ly/SensorsCouncilYouTube

Publicity Resources ieee-sensors.org/publicity-documents/

Sensors Council

Stay up to date on Sensors Council news and events!

GE Vernova Advanced Research Center, Niskayuna, NY

GE Vernova portfolio of businesses

- Reductions in greenhouse gas emissions (including CO2, CH4, N2O, HFCs, H2)
- · Fuel cells, batteries, and energy storage
- Carbon capture, utilization, and storage

Sensors Council

VERNOVA

- Processes that enhance industrial efficiency, building construction/maintenance efficiency
- Production of clean energy including solar, hydrogen, nuclear, or other clean energy sources

Lecture outline: Learning from *Nature*

Biology

Sensors Council

500 nm

High temp. sensing 2 µm

2 um

Bioinspiration – new functionality, beyond Nature

Understanding Status Quo of conventional gas sensors

GE VERNOVA

Biomimetics – recreation of observed functionality Multi-gas sensing at room temperature

Toward Societal Impact

Every century – solving practical gas-detection challenges

World War I soldiers as gas scouts

https://www.hsdl.org/?view&did=1670

Alcohol levels in breath

http://garda-post.com/breathalyser-testing-a-brief-history/

Canaries in mines per safety regulations

http://news.bbc.co.uk/

20th century:

Security and industrial safety needs and demands drive practical available solutions

Trillion Sensor Universe

Bryzek, J., Roadmap for the Trillion Sensor Universe.

International Electronics Manufacturing Initiative Spring Member Meeting and Webinar: Berkeley, CA, 2013

https://www.exo.inc/our-people/janusz-bryzek

GE VERNOVA Sensors Council

Trillion Sensor Visions 100.000.000.000.000 10.000.000.000.000 1,000,000,000,000 100.000.000.000 10.000.000.000 "Abundance" QCOM Swarm Lab, UCB Bosch Hewlett-Packard 1,000,000,000 Intol TI Internet devices Yole MEMS Forecast, 2012 TSensors Bryzek's Vision 100.000.000 10 year slope Mobile Sensors Explosion Winter Green Research Cisco 10.000.000 2006 2011 2016 2021 2026 2031 2036 Janusz Bryzek 2014

Dec. 8, 2022 PETER H. DIAMANDIS **METATREND #9:** TRILLION-SENSOR ECONOMY: THE **ABILITY TO SENSE** AND KNOW ANYTHING, ANYTIME, **ANYWHERE**

https://www.diamandis.com/blog/metatrend_9_trillion_sensor_economy

High demand for high-quality sensors

Sensors for mobile applications: annual sales of billions of units

28.3

https://iot-connected

High demand for high-quality sensors

30

25

20

15

10

10.0^{11.3} 12.2 14.4 16.5 18.8 21.5 24.5

2019a 2020a 2021a 2022a 2023a 2024f 2025f 2026f 2027f 2028f 2029f 2030f

Wired IoT -----

Wireless local

Wireless personal area networks (WPAN)

(XX%) = CAGR

Cellular IoT (excl. 5G, LPWA -----

area networks (WLAN)

LPWA

Sensors for mobile applications: annual sales of billions of units

Pressure sensors

Miniaturization into wearables Sensor fusion at chip level Al-driven analytics

Microphones

Improved active noise cancellation Wider dynamic range Advanced beamforming

Accelerometers

Miniaturization into wearables Advanced signal conditioning Sensor fusion

Compasses

Reduced magnetic interferences Wider dynamic range Built-in control logic

Gyroscopes Miniaturization into wearables Lower drift rates Sensor fusion

https://www.kpptech.com/exploring-five-major-future-directions-of-mems-microphones/ https://www.lizzlq.org/en/post/how-does-my-smartphone-s-acelerometer-work https://steadying.com/en/market-research-reports/posts/eb3/2de3-1ef5-4884-a264-8de7711100bf https://www.eetimes.gu/senteks-cutifing-edge-e-compass-sets-new-standards-with-dynamic-range-breakthrough/ https://www.eetimes.gu/senteks-cutifing-edge-e-compass-sets-new-standards-with-dynamic-range-breakthrough/ https://www.eetimes.gu/senteks-cutifing-edge-e-compass-sets-new-standards-with-dynamic-range-breakthrough/

Modern gas sensors: Diverse requirements for myriad applications

- Safety
- Security
- Regulations
- Productivity
- Convenience
- Comfort
- Etc...

Sensors Council

GE VERNOVA

Understanding diverse requirements for myriad applications of modern gas sensors

Needs for hydrogen sensors in diverse applications

Parameter	Performance Requirement			
	Stationary Systems [*]	Automotive Systems**	Safety Systems***	
Measurement Range	up to 4%	up to 4%	0.1% - 10%	
Detection Limit	< 100 ppm	-	-	
Operating Temperature	-20 °C – 50 °C	-40 °C – 125 °C	-30 °C - 80 °C	
Response Time	< 30 s	< 3 s	<1s	
Recovery Time	< 60 s	< 3 s	-	
Accuracy	25%	-	5%	

* ISO 26142:2010 Hydrogen detection apparatus - Stationary applications 2010

** U.S. Dept of Energy, Hydrogen, Fuel Cells & Infrastructure Technologies Program. Multi-Year Research, Development, and Demonstration Plan, 2003-2010. Section 3.4 Fuel Cells. 2005

*** U.S. Dept of Energy, Energy Efficiency and Renewable Energy (EERE). Multi-Year Research, Development, and Demonstration Plan, 2011-2020. Section 3.7 Hydrogen Safety, Codes and Standards 2015

https://medium.com/@imirsanket7/hydrogen-fueling-stationmarket-size-status-ongoing-trends-and-forecast-to-2031

GE VERNOVA Sensors Council

https://fuelcellsworks.com/news/airbus-fine-tunes-hydrogen-decision-schedule/

Table from: Nature Materials 18 2010 480-405

https://www.powermag.com/content-collection/top-plant-successful-greenhydrogen-demonstration-project-is-a-step-toward-a-carbon-free-future/

https://arpa-e.energy.gov/technologies/exploratory-topics/H2SENSE

2024

Illustrative types and safe levels of indoor volatiles

Chemical Substance	EPA, USA (8 hours daily)	DFG, Germany (8 hours daily)	WHO (exposure time)
Benzene	29 mg/m ³	0.2 mg/m ³	No safe level
Formaldehyde	1.12 mg/m ³	0.37 mg/m ³	0.1 mg/m ³ (30 min)
Napthalene		0.5 mg/m ³	0.01 mg/m ³ (1 year)
Styrene	86 mg/m ³	86 mg/m ³	0.26 mg/m ³ (1week)
Trichloroethylene	420 mg/m ³	33 mg/m ³	230 mg/m ³ (lifetime risk of 1/10.000)
Tetrachloroethylene	241 mg/m ³	138 mg/m ³	0.25 mg/m ³ (1 year)
Toluene	257 mg/m ³	190 mg/m ³	0.26 mg/m ³ (1 week)

https://www.catsensors.com/media/Decentlab/Productos/IAM_interior/Overview_TVOC_and_IAQ.pdf

https://www.weforum.org/agenda/2022/07/what-causes-indoor-air-pollution-sources-how-to-reduce/

GE VERNOVA Sensors Council

https://prohvacinsights.com/indoor-air-quality-101/

Sept 2, 2024

Public Copyright © 2024 GE Vernova All rights reserved

https://cen.acs.org/analytical-chemistry/Indoorair-monitoring-goes-school

R. A. Potyrailo 2024 17

Air quality index: Four volatiles and their levels of concern

Ozone O₃ Nitrogen dioxide NO₂ Sulfur dioxide SO₂ Carbon monoxide CO

< 0.1 ppm

Concentrations of concern: Brunekreef, Holgate, *Lancet* **2002**, 360, 1233–1242 who.int/ceh/capacity/Outdoor_air_pollution.pdf

AQIAQI $I_{low} - I_{high}$ Category0-50Good51-100Moderate101-150Unhealthy for Sensitive Groups151-200Unhealthy201-300Very Unhealthy301-400Hazardour		
Ilow - IhighCategory0-50Good51-100Moderate101-150Unhealthy for Sensitive Groups151-200Unhealthy201-300Very Unhealthy301-400Hazardour	AQI	AQI
0-50Good51-100Moderate101-150Unhealthy for Sensitive Groups151-200Unhealthy201-300Very Unhealthy301-400Hazardour	I _{low} - I _{high}	Category
51-100Moderate101-150Unhealthy for Sensitive Groups151-200Unhealthy201-300Very Unhealthy301-400Hazardous	0-50	Good
101-150Unhealthy for Sensitive Groups151-200Unhealthy201-300Very Unhealthy301-400Hazardous	51-100	Moderate
151-200Unhealthy201-300Very Unhealthy301-400Hazardous	101-150	Unhealthy for Sensitive Groups
201-300 Very Unhealthy 301-400 Hazardous	151-200	Unhealthy
301-400	201-300	Very Unhealthy
	301-400	Hazardous
401-500	401-500	

Technical Assistance Document for the Reporting of Dath Air Quality – the Air Quality Index (AQI). US EPA Office of Air Quality Planning and Standarda: EPA-454-69-6031, 2009 Revised Air Quality Standards For Patricle Pollution And Updates To The Air Quality Index (AQI). US EPA Office of Air Quality Planning and Standards = 2013

Annual trends in urban areas over 2000–2019

Sicard, P. et al. Sci. Total Environ. 858, 160064 (2023)

Volatiles and volatile biomarkers in exhaled breath

Volatiles in exhaled breath

Categories of 800+ volatiles in exhaled breath:

- alkanes.
- alkenes.
- alkynes.
- alcohols,
- aldehydes,
- acids.
- ethers.
- esters.
- ketones,
- nitrogen-, sulfur-, and halogen-containing volatiles,
- benzyl, and phenyl hvdrocarbons

GE VERNOVA

de Lacy Costello, et al., J. Breath Res. 2014, 8, 1-29

Sensors Council

Volatile biomarkers of health condition

Sample	Disorder/Infection	Volatile compounds
Microorganism-associated disorders		
Urine	Urinary tract infection	Isovaleric acid, alkanes
Intraperitoneal fluid	Aerobic Gram-negative bacteria	Terpenes, ketones
Other disorders		
Human breath	Breast cancer	Alkanes, monomethylated alkanes
Human breath	Lung cancer	Alkanes, monomethylated alkanes
Human breath	Acute asthma	Pentane
Urine	Metabolic disorders	Isovaleric acid
Alveolar air	Hepatic coma	Methyl-mercaptan
Alveolar air	Rheumatoid arthritis	Pentane
Alveolar air	Schizophrenia	Pentane, carbon disulphide
Alveolar air	Ketosis	Acetone

Turner, A. P. F.; Magan, N. Nat. Rev. Microbiol. 2004, 2, 160-166

Examples of exhaled breath analysis

15.0

GCxGC = two-dimensional gas chromatography TOFMS = time-of-light mass spectrometry

Public Copyright © 2024 GE Vernova All rights reserved

GCxGC

Examples of standards and guidelines for gas detectors

SEMI MS14-0422 Standard:

Critical parameters of gas sensors for emerging applications

Primary application	Standards and Guidelines	Ref.
Ambient air quality measurements	ASTM WK64899 New Practice for Performance Evaluation of Ambient Air Quality Sensors and Other Sensor-Based Instruments	[1]
Indoor air quality	UL Environment Standard 2905 Environmental Claim Validation Procedure for Indoor Air Quality (IAQ) Sensor Performance	[2]
Toxic and combustible gas and vapor detectors and sensors in indoor / outdoor locations	UL 2075 Standard for Gas and Vapor Detectors and Sensors	[3]
Workplace atmospheres	IEC 62990-1 Workplace atmospheres - Part 1: Gas detectors - Performance requirements of detectors for toxic gases	[4]
Workplace safety	IEC 60079-29-1 Explosive atmospheres - Part 29-1: Gas detectors - Performance requirements of detectors for flammable gases	[5]
Detection of oxygen and toxic levels of gases and vapors	AS/NZS 4641 Electrical equipment for detection of oxygen and other gases and vapours at toxic levels - General requirements and test methods	[6]
Commercial / industrial (non-residential) safety applications	ANSI/ISA 12.13.01-2013, Explosive Atmospheres - Part 29-1: Gas Detectors - Performance Requirements Of Detectors For Flammable Gases	[7]
Toxic gases in commercial / industrial locations	ANSI/ISA-92.00.01-2010 (R2015), Performance Requirements for Toxic Gas Detectors	[8]
Homeland security	ASTM E2885 - 13 Standard Specification for Handheld Point Chemical Vapor Detectors (HPCVD) for Homeland Security Applications	[9]
Marine environments	MSC.1/Circ.1370 Guidelines for the design, construction and testing of fixed Hydrocarbon gas detection systems	[10]
Department of Defense and commercial applications	MIL-STD-810H Department of Defense Test Method Standard	[11]

1. ASTM WK64899 New Practice for Performance Evaluation of Ambient Air Quality Sensors and Other Sensor-Based Instruments. ASTM, https://www.astm.org/DATABASE.CART/WORKITEMS/WK64899.htm; 2018.

2. UL 2905 Environmental Claim Validation Procedure for Indoor Air Quality (IAQ) Sensor Performance. Underwriters Laboratories, https://standardscatalog.ul.com/ProductDetail.aspx?productd=ULE2905 1. S. 20200519: 2020.

3. UL 2075 Standard for Gas and Vapor Detectors and Sensors. Underwriters Laboratory, https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL2075; 2013

4. IEC 62990-1 Workplace atmospheres - Part 1: Gas detectors - Performance requirements of detectors for toxic gases. International Electrotechnical Commission, https://www.techstreet.com/standards/iec-62990-1-ed-1-0-b-2019?product id=2081273: 2019.

5. IEC 60079-29-1 Explosive atmospheres - Part 29-1: Gas delectors - Performance requirements of detectors for flammable gases CONSOLIDATED EDITION. International Electrotechnical Commission, https://www.lechstreet.com/standards/lec-60079-29-1-ed-2-1-b-2020?product_id=2108773#product_2020

6. ASIN2S 4641 Electrical equipment for detection of oxygen and other gases and vapours at toxic levels - General requirements and test methods. Standards Australia, https://www.standards-catalogue/sa-anz/mining/enoz

AnS/ISA-32.00.01-2010 (K2015), Performance requirements for Lot of Case Detectors: American National Standards Institute/International Stately Association, Intros. National Stately Association, Introduction, Introduction, International Stately Association, Introduction, International Stately Association, Internati

 No I M E2805 - 1 3 Standard Specification for Handheld Panit Chemical Vapor Detectors (FINCVD) for Homeiana Security Applications, American Society for Lessing and Materials, <u>https://www.asemi.org/sciences/scienc sciences/s</u>

1. MI. STD-810H Department of Defense. Test Meltod Slandard: Environmental Engineering Considerations and Laboratory Tests. US Department of Defense. Washington, DC USA, https://www.iest.org/Standards-RPs/MI.STD-810H-201

Every century – solving practical gas-detection challenges

2024:

Security needs and demands drive practical available solutions

Public Copyright © 2024 GE Vernova All rights reserved

Contemporary gas sensors: Gas cross-sensitivity as accepted status quo

②EPA

It must be stated that no low cost sensors meet the Regulatory Monitoring requirements -Air Sensor Guidebook, EPA/600/R-14/159, 2014

SEDA

Data of poor or unknown quality is less useful than no data since it can lead to wrong decisions - Environmental Science and Technology, **2013**, 47, 11369–11377 The biggest headaches are caused by interfering chemicals Nature, **2016**, 535, 29-31

"For the revolution to take off, accuracy must improve"

Contemporary traditional analytical instruments: exquisite performance

Chemiluminescence

GE VERNOVA

UV fluorescence

GC = Gas chromatography

MS = Mass

spectrometry

https://www.inficon.com/en/products/chemicaldetection-and-utility-monitoring

Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants - Vol. 1. EPA/600/R-16/139. 2016

https://alliedscientificpro.com

Laser

draeger.com/en-us us/ Products/X-pid-9000-9500 https://908devices.com/ products/mx908/

Chemistry 1952 **Physics** 1981 Chemistry 2002

partition chromatography laser spectroscopy mass spectrometry

Diverse mathematical principles to operate in highly variable unpredictable backgrounds

Mathematics of analytical instruments: Different orders of measurements

Booksh, K. S.; Kowalski, B. R. Theory of analytical chemistry, *Anal. Chem.* **1994**, 66, 782A-791A

Report

GE VERNOVA

Theory of Analytical Chemistry

ence has its own theory-a col-lection of laws, axioms, corollaranalytical researchers trying to constru-A guiding theory of analytical chemistry ics, and rules that guides the scientist in **Orders of instruments** sing experiments to unrased the secrets were analytical instrument or method ca can be used to specify of nature. As the saving "theory guides, e be classified according to the type of data eriment decides" suggests, theory and oxides. Using existing terminolog what information can eriment are interwoven and mutual mathematics are can say that an inment that generates a single datur portive in any healthy growing sci be extracted from the tr sample is a zero-order instrument because a single number is a zero-order ten-When a building analytical chamilton data produced by an takes his or her first course in analytic sor. Zero-order instruments include ionchemistry, the textbook usually begins by selective electrodes and single-filter phoanalytical instrument placing chemical analysis in the broader First-order instruments include all repective of chemical sciences, describ or method ing different types of analyses (e.g., qualvnes of spectrometers, chromatographs and even arrays of zero-order sensor

Sensors Council

Our roadmap: electromagnetic multivariable gas sensors

Photos by GE Research, R. Potyrailo

Cross-pollination of electronics + mathematics = un-anticipated performance boost in *multivariable* gas sensors

Tools for data analysis of multivariable sensors: Chemometrics, machine learning (ML), data analytics, multivariate statistics

Data analytics

Artificial Neural Network (ANN)
Convolutional Neural Network (CNN)
Principal component analysis (PCA)
Discriminant Analysis (DA)
Hierarchical cluster analysis (HCA)
Support Vector Machines (SVM)
Independent Component Analysis (ICA)
Partial least squares (PLS) regression
Principal Component Regression (PCR)

Potyrailo Chem. Rev. 2016

New tools boost sensor stability, selectivity, sensitivity

Potyrailo, *Chem. Soc. Rev.* Potyrailo, et al., IEEE SENSORS, Paper 2381, Potyrailo, et al., IEEE SENSORS, Paper 2385, Potyrailo, et al., *Appl. Spectrosc.*, Potyrailo, et al., UPEC 2024, Paper 40,

Potyrailo et al., Faraday Transactions 2020

UPEC 2024 Prize Winners

2nd Prize for Best Paper

Toward unattended 24/7 monitoring and localization of leaks of electrical insulating gases and their decomposition products by Radislav A. Potyrailo, Baokai Cheng, Edward Arevalos, Karim Younsi, Ibrahima Ndiaye, Yang Cao

Illustrative flow-down requirements: User \rightarrow system \rightarrow component

Maintenance schedule Certifications

GE VERNOVA Sensors Council

•Accuracy •Power •Calibration •Communication

Photos: by R. Potyrailo and by GE team Public Copyright © 2024 GE Vernova All rights reserved •Selectivity •Sensitivity •Stability •Speed

Illustrative data visualization tools in multi-parameter responses in gas detection

Principal Components Analysis (PCA)

Unsupervised pattern recognition algorithm Reduces dataset to orthogonal PCs

Potyrailo, et al., Nat. Electron. 2020, 3, 280-289

Hierarchical cluster analysis (HCA)

Unsupervised cluster analysis algorithm Builds clusters by dissimilarities between data

Potyrailo, et al., Nat. Commun. 2015, 6, 7959

Confusion matrix (a.k.a. error matrix)

Compares Predicted versus True categories Represents accuracy of classification model

Potyrailo, et al., 2022 CBD S&T Conf., 2022, 159

Examples of natural photonic crystals

J. Opt. **2018,** 20, 024006

Adv. Mater. Technol. 2024, 2400865

Bright iridescence is produced by diverse photonic effects

Natural photonic nanostructures as unconventional interfaces for multi-gas sensing ?

Unique open-to-air photonic nanostructured interface

Structural color in nature: from understanding to functional applications

Operation principle of multivariable sensors utilizing natural *Morpho* butterfly scales

Research curiosity brings a potential for useful performance

Stability of the reflectivity pattern of *Morpho* scales

Spatially-resolved (100-um step size) reflectivity of scales of intact butterfly

Potyrailo et al., Nature Photonics, 2012

Public Copyright © 2024 GE Vernova All rights reserved

Reproducibility of spectral vapor responses of Morpho scales

Reproducibility of $\Delta \mathbf{R}(\lambda)$ **spectra Reproducibility of** from different samples (n = 3)dynamics and magnitude of response 120 125 0.15 Water vapor, P/Po 115 0.10 120 Delta Reflectance (%) Delta Reflectance (%) 110 115 0.07 0.04 110 105 0.02 105 100 100 95 400 500 600 700 800 900 0 200 400 600 800 1000 Wavelength (nm) Time (s) P = vapor partial pressure

 P_0 = saturated vapor pressure

Potyrailo et al., Nature Photonics, 2012

Public Copyright © 2024 GE Vernova All rights reserved

Unexpected differentiation of closely related vapors: water, methanol, ethanol

Multivariate spectral analysis reveals extraordinary selectivity of optical response to diverse vapors

Origin of high vapor-response selectivity: polarity gradient of ridges of *Morpho* scales

Tops of ridges are more polar than their bottoms as determined by staining with polarity-sensitive dye

Sensors Council

GE VERNOVA

Public Copyright © 2024 GE Vernova All rights reserved Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15567–15572 R. A. Potyrailo 2024 35

Understanding design rules for bio-inspired photonic sensors: toward multi-gas sensing with fabricated photonic nanostructures

Modelling results

Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15567-15572

Sensors Council

GE VERNOVA

Proc. Natl. Acad. Sci. U.S.A. 2013, 110. 15567-15572

Experimental results

Nat. Photonics 2007, 1, 123-128

Journal of Optical Microsystems 2024, 4, 020902
Comparison of *Morpho* scales response with "benchmark" porous Si vapor-sensing material

Porous silicon is an ideal control with excellent vapour-sensing properties and demonstrated possibilities for surface functionalization

Vapor selectivity of Morpho scales vs. no-selectivity of porous Si

Comparison parameters: (1) relative intensities; (2) directions of responses; (3) dynamics of responses

Sensors Council

(ge)

GE VERNOVA

Public Copyright © 2024 GE Vernova All rights reserved Potyrailo et al., Proc. Natl. Acad. Sci. U.S.A. 2013 R. A. Potyrailo 2024

38

Up to 5-D dispersion with individual natural photonic nanostructures

High dispersion allows differentiation of analytes in complex backgrounds

Sensors Council

GE VERNOVA

From fundamental science to new insights in multi-gas nanostructured photonic sensors

Design rules for multi-gas differentiation control:

- •Spatial orientation of surface functionalization
- •Chemistry of surface functionalization
- •Extinction and scattering of nanostructure

Response stability of nanostructures: 160 cycles of methanol (MeOH) and water (H2O) vapors

Exposures to vapors: differential reflectance spectra

GE VERNOVA

Sensors Council

Ben = benzene ACN = acetonitrile MEK = methyl ethyl ketone MeOH = methanol H2O = water

Concentrations of vapors: 0.05, 0.07, 0.09, 0.11 P/P₀

LOD = limit of detection

Exemplary	Extrapolated
vapours	LOD (ppm)
Benzene	45
Acetonitrile	9
Methyl ethyl ketone	7
Methanol	13
Water	8
Ethanol	10
Propanol	3

Potyrailo et al. *Nature Communications* **2015**

Unique spectral responses to different vapors reveal diversity of optical interactions probed by individual sensor

Differentiation of vapors

PCA and HCA independently showed clustering based on nature of diverse vapors measured by single multivariable sensor

Single multivariable sensor outperforms sensor arrays

Radislav A. Potyrailo¹, Ravi K. Bonam², John G. Hartley², Timothy A. Starkey³, Peter Vukusic³, Milana Vasudev^{4,5}, Timothy Bunning⁴, Rajesh R. Naik⁴, Zhexiong Tang¹, Manuel A. Palacios¹, Michael Larsen¹, Laurie A. Le Tarte¹, James C. Grande¹, Sheng Zhong¹ & Tao Deng^{1,6}

GE VERNOVA

Sensors Council

Multi-gas sensing: Dispersion of a dosimeter array vs a multivariable sensor

High dispersion of a 36-sensor array:

9 dimensions capture 90% of total variance

Potyrailo et al. Chem. Rev. 2016

High dispersion of single multivariable sensor:

11 dimensions capture 90% of total variance

Sensors Council

GE VERNOVA

Individual bio-inspired sensor

Potyrailo et al. Nature Comm. 2015

New perspective for sensing: Selectivity within a single nanostructured unit, rather than from an array of colorimetric sensors

Our nanostructured sensing materials w/ exquisite light control

March 2023

Potyrailo, R. A. *Reporting Interfaces: Unconventional Excitation of Interfaces Enables Exquisite Gas Sensing Toward Our Sustainable Future*. (AVS 69th International Symposium & Exhibition, Portland, OR, Nov 5 - 10, Paper 76397, **2023**)

GE VERNOVA Sensors Council

New opportunities for multi-gas sensing using nanostructures with extremely high aspect ratio

Advancing design rules of nanostructures: high temperature gas-sensing applications

Advancing design rules of nanostructures: high temperature gas-sensing applications

Nanostructure with Au nanoparticles

Nanostructure with Pd, Pt, and Au nanoparticles

Potyrailo, et al. From Natural to Fabricated Gas Sensing Photonic Nanostructures: Unexpected Discoveries and Societal Impact. (AVS 69th International Symposium & Exhibition, Portland, OR, Nov 5 - 10, Paper 78421, **2023**)

Analysis by Andrei Kolmakov, NIST

Design rules for multi-gas differentiation control at high temperatures (300C)

- Diversity of catalytic reactivity of nanoparticles (type of noble metal, particle size)
- •Spatial distribution of catalytically diverse nanoparticles

ensors Council

VERNOV

•Spectral discrimination of catalytic reactions in different regions of 3D nanostructure

Need for real-time monitoring of H₂ and CO gases in solid oxide fuel cell (SOFC) applications

Real-time knowledge of H_2 /CO ratio of anode tail gases:

- to allow control of efficiency of reforming process in the SOFC system
- to deliver a lower operating cost for SOFC customers

Response to H_2 and CO

Spectral diversity of responses at different wavelengths allows discrimination of H₂ and CO gases

Differentiation between to H₂ and CO

Cross validated prediction of H₂ and CO

Resolution between individual concentrations of H₂ and CO

Sensors Council

GE VERNOVA

Field tests of nanostructured sensors at GE Fuel Cells

Example of two SOFCs

Benchmark and sensor systems

Effects of baseline drift in three categories of instruments

Resolution of mixtures of CO₂ with water vapor using multivariable gas sensor

White-light illumination of sensor

Bioinspired photonic gas sensing: elimination of drift

Long-term response: analyte, interference, their mixtures

Public Copyright © 2024 GE Vernova All rights reserved

GE VERNOVA

Sensor stability boost using advanced data analytics (a.k.a. machine learning, ML)

Sensors Council

(*3*E)

GE VERNOVA

Toward design of nanostructured materials for operation with pulse oximeter LEDs

Rejection of interference (humidity) on par with more bulky multivariable sensor systems

New spectrometer architectures

ARTICLE

3-D dispersion in bio-inspired core/shell photonic colloidal crystal sensors

Sensor selectivity is based on optical lattice constant of colloidal crystal with cores and shells of nanospheres responding to diverse vapors

Part-per-billion gas detection with bio-inspired protonic crystals

Multi-gas sensing with chemically modified fiber-optic cladding

Optical readout for spatially resolved gas detection along the fiber

Sensors Council

GE VERNOVA

Evanescent-wave absorption spectrum of PCS optical fiber with chemically modified cladding

Coiled PCS optical fiber with chemically modified cladding

Sensing mechanism for multi-analyte detection: polymer interactions and reagent interactions with high-order modes

Public Copyright © 2024 GE Vernova All rights reserved

4-D dispersion of response of fiber-optic sensor to five vapors

Summary: Photonic multivariable multi-gas sensors

- Developed theoretical understanding of exquisite multi-vapor differentiation by natural *Morpho* nanostructures
- Developed design rules of nano-structured sensors for multi-gas detection at room and high (300C) temperatures
- Implemented diverse nanofabrication techniques to build photonic nanostructures with spatial materials control

Summary: Photonic multivariable multi-gas sensors

Performance capabilities

Selectivity:

highest response dispersion among multivariable sensors

Selectivity:

outperformed gas sensor arrays in side-by-side tests

Sensitivity:

part-per-million, part-per-billion

Multiple gases: quantitation with a single sensor

Cost-effective fabrication

Photonic Integrated Circuits

- Emerging methodology
- Estimated cost per 100 mm² chip
 - 1 M chips/year = \$500
 - 10 B chips/year = \$0.2

Wafer-level system fabrication:

- Integrated tunable light source
- · Gas sensing nanostructure
- Dispersive grating element
- Array detector
- Conditioning electronics

Wafer-level fab

Wafer-level fab

Examples of potential applications for industrial, consumer, healthcare, environmental fields:

- · Emissions monitoring at power plants
- Food and beverage safety monitoring
- Water purification testing
- Breath analysis for disease detection
- Wound healing assessment

Our vision toward ideal desired gas sensor capabilities:

(1) Develop new sensing principles to reach performance of traditional analytical instruments

US EPA Climate Adaptation Plans

NASA Mitigation and Adaptation | Solutions – Climate Change https://climate.nasa.gov/solutions/adaptation-mitigation/

FEMA NPB Climate Change Response and Recovery Planning Guidance

https://www.fema.gov/sites/default/files/documents/fema_respons e-recovery_climate-change-planning-guidance_20230630.pdf

US DoD Tackling the Climate Crisis https://www.defense.gov/spotlights/tackling-the-climate-crisis/

DoD MEETING THE CLIMATE CHALLENGE https://comptroller.defense.gov/Portals/45/Documents/defbudget/F Y2023/FY2023 Meeting the Climate Challenge J-book.pdf

USDA Climate Change Adaptation

https://www.usda.gov/oce/energy-andenvironment/climate/adaptation#:~:text=The%20Action%20Plan% 20for%20Climate,and%20operational%20and%20financial%20cli mate

ARPA-E Accelerating U.S. Energy Innovation <u>https://arpa-e.energy.gov/technologies/publications/arpa-e-</u> accelerating-us-energy-innovation

Sensors Council Rubia Convictor @ 2022

E VERNOVA

Our vision toward ideal desired gas sensor capabilities: (2) Less computing power by hardware design for edge-based data analytics

Cross-pollination of electronics + mathematics = Toward performance boost in *multivariable* gas sensors

Sept 20, 2024

https://www.theguard

ian.com/environment/

2024/sep/20/three-

mile-island-nuclear-

plant-reopenmicrosoft

Thank you !

Acknowledgements

Radislav Potyrailo potyrailo@ge.com

GE Public Copyright © 2023 GE All rights reserved

Original concept of sensor arrays: E-Nose

Concept of sensor arrays: E-Nose 2.0

Friedrich, R. W.; Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity, Science 2001, 291, (5505), 889-894

Concept of sensor arrays: E-Nose 2.0

Sensors Council

GE VERNOVA
Concept of sensor arrays: E-Nose 2.0

