

Advanced Metal-Eutectic Bonding for High Volume MEMS WLP

Sumant Sood SUSS MicroTec Inc

IEEE MEMS Bay Area Meeting, 26 Feb 2014

1	Introduction
2	Metal Based Wafer Bonding
3	Al-Ge Eutectic Bonding
4	Experimental Data and Results
5	Concluding Remarks

Contents

1	Introduction
2	Metal Based Wafer Bonding
3	Al-Ge Eutectic Bonding
4	Experimental Data and Results
5	Concluding Remarks

Main MEMS WL Packaging Processes

Anodic Bonding

- Si to glass
- Special cases (glass-glass, glass-metal etc)

Metal Diffusion Bonding

- Cu to Cu
- Au to Au
- Ti to Ti/Si
- Al-Al

Eutectic Alloy Bonding

- Au/In
- Cu/Sn
- Au/Sn
- Au/Si and Au/Ge
- Al/Ge

Direct Bonding

- Si to Si, SiO_x, Si_xN_{y} , Glass etc
- Glass to glass
- Si to piezoelectric materials (Quartz, LiNbO₃, LiTaO₃)
- Compound Semiconductors Bonding (InP, GaAs, GaN, SiC etc)
- Glass Frit Bonding (traditional and lead-free)

Adhesive/Polymer Bonding

- Cyclotenes (BCB 3000 and 4000 series)
- SU8
- Polyimides
- UV and heat curable Epoxies

Head-Head Comparison

Factor	Criteria	Anodic	Glass-frit	Direct	Metal Diffusion	Adhesive	Eutectic
Bond Force	<10KN	Ţ	Ť	ſ	↓	ſ	¢
Bond Temp	Large temp Range	\downarrow	\rightarrow	ſ	\rightarrow	ſ	¢
Alignment capability	<2um	\rightarrow	\rightarrow	Ţ	Ť	Ť	Ţ
Hermetic Seals	Should be hermetic	Ť	Ť	Ť	1	\rightarrow	¢
Heterogeneous integration	Should be possible	Ļ	Ť	Ļ	1	1	<u>↑</u>
Roughness requirement	>10nm	↑	ſ	\downarrow	Ļ	ſ	¢
Potential I	ssues	Not CMOS/ FEOL compatible	Dirty process, large bond line width, high temp	Requires clean particle-free surfaces	Requires metal CMP Issues with severely bowed wafers	Not hermetic, large seal width	Potential oxidation of metal layers

WLP Processes Evolution

1	Introduction
2	Metal Based Wafer Bonding
3	Al-Ge Eutectic Bonding
4	Experimental Data and Results
5	Concluding Remarks

Metal Inter-Diffusion Bonding

+ Bonding Mechanism

- Smooth, clean metal surface critical
- Intimate contact of bonding layer
- Solid phase metal inter-diffusion
- surface oxide removal needed
- Homogeneous high force requirement

+ Bonding Conditions (6"/8" wafers)

Bond Type	Bond Temp	Force*	Pre-clean
Cu-Cu	250-400C	20-40kN	Oxide removal-wet cleans and In-situ forming gas
Au-Au	250-400C	40-70kN	Organics removal via O2 plasma/UV treat
AI-AI	400-480C	50–90kN	Oxide removal/cracking- Ar ion-milling and In-situ
Ti–Ti	300-400C	25-50kN	Organics removal- Minor cleaning

SEM cross-section of a bonded Cu blanket pair. Each wafer has 300nm of ECU Cu/ 100nm PVD Cu/ 20nm Ti seed layer.

Au-Au bonding used in a 3-axis accelerometer.

Metal Eutectic Bonding

+ Bonding Mechanism

- Heat up to 20 30 °C higher than eutectic point (T_e)
- Two metals are melted and mixed
- Cool down to below T_e
- Homogeneous temperature < +/-2 %
- Homogeneous pressure
- Faster heating > 30°C/min

(Au) (Au)

+ Bonding Condition (6"/8" wafers)

Eutectic Alloy	Eutectic Comp.	Eutectic Temp	Bond Temp*	SLID/TLP
Au-In	0.6/99.4 wt%	156C	180-210C	Yes
Cu-Sn	5/95 wt%	231C	240-270C	Yes
Au-Sn	80/20 wt%	280C	280-310C	Yes
Au-Ge	28/72 wt%	361C	380-400C	No
Au-Si	97.1/2.9 wt%	363C	390-415C	No
Al-Ge	49/51 wt%	419C	430-450C	No

SAM image of an aligned 6" AuSn bond.

TLP (Transient Liquid Phase) Bonding

+ Bonding Mechanism

- Heat up to slightly higher than melting point (T_m) of low-melting point metal (M_L)
- M_L melts and mixed with highmelting point metal (M_H)
- Form intermetallic compound (IMC)
- Homogeneous temperature < +/-2 %
- Homogeneous pressure

Bonding Condition

Material	Bond Temp. (°C)	Force @8" (N)	Duration (min)	Pre-treatment
Au-In	180 – 200	1-10k	1-5	Organics Ashing for Au
Cu-Sn	240 – 280	5-15K	10 – 20	Oxide removal of Cu
Au-Sn	240-280	5-15K	10-20	Organics Ashing for Au

SEM Micrograph and corresponding EDX line scan show a Cu/Cu-Sn/Cu sandwich which are confirmed by EDX. The measured 32wt % corresponds to the target IMC

30

1	Introduction
2	Metal Based Wafer Bonding
3	AI-Ge Eutectic Bonding
4	Experimental Data and Results
5	Concluding Remarks

Al-Ge Eutectic Bonding

metal interconnects)

Al-Ge Eutectic System for CMOS-MEMS IEEE Integration

The Aluminum- Germanium system is a simple eutectic system with three phases (a) liquid (b) fcc (AI) solid solution and (c) diamond cubic (Ge) solid solution with eutectic point of $420^{\circ}C \pm 4^{\circ}C$ (*Ref: Crnogorac et al, 2009*)

$$\frac{t_{Ge}}{t_{Al}} = \frac{at\%_{Ge}}{at\%_{Al}} \frac{\rho_{Al}}{\rho_{Ge}} \frac{A_{Ge}}{A_{Al}} = 0.59$$

Ideal Ge /AI thickness ratio is ~0.59 based on 71% at. Wt. AI and 29% at. wt. Ge

Typical AI/Ge stack for MEMS capping with AI on device wafers

SEM images of pre-bonded wafer stacks used for initial study (a) Substrate 1: Si/0.1µm TEOS/0.5µm Ge (b) Substrate 2: Si/0.1µm TEOS/0.5µm -1um Ge /1µm Al

Understanding the Al-Ge Eutectic Bond

Microstructure of Al–Ge alloys: (a) 10 at.% Ge; (b) 20 at.% Ge; (c) 28.4 at.% Ge; (d) 40 at.% Ge

- + AES Analysis identified Ge dendrites (light grey) embedded in an Al matrix (dark)
- This geometric structure is typical of AI-Ge system in which solidification takes place at the eutectic temperature where tow distinct liquidus curves meet.
- At this temperature both AI and Ge solid phases must deposit on the grain nuclei until all the liquid is converted into the solid.
- + The simultaneous deposition results in a distinct microstructure unique to the alloy and is usually observed in slowly cooled samples.

Alloy	Density 10 ³ kg/m ³	Young's modulus (GPa)
AI-10 at.% Ge	3.06 ± 0.01	76.1 ± 0.8
AI-20 at.% Ge	3.30 ± 0.02	83.1 ± 0.8
AI-28.4 at.% Ge	3.49 ± 0.02	90.0 ± 0.9
AI-40 at.% Ge	3.77 ± 0.02	96.5 ± 0.9

Al-Ge Electrical Resistivity

Resistivity of crystallized Al-Ge alloys as functions of the volume fraction of Ge

Resistivities at room temperature of sputterdeposited AI–Ge alloy films in the amorphous and crystallised state as a function of the atomic fraction of Ge.

(Ref: A. Boogaard, J.J. van den Broek / Thin Solid Films 401 (2001) 1–6)

Process Design Phases

Metal Stack and seal ring width optimization

- Seal ring widths varied between 30 and 120um
- Single Wafer with deposited AI-Ge layers
- Al/Ge thickness ratio varied between 1.5 and 2.2

Bond Process Parameters and Machine Optmization

- Determine optimum process parameters for
 - Minimal Squeeze-out
 - Improved Bond morphology
 - Improved Shear strength

Phase C

HVM Process Qualification

- Minimize cap-fly off
- Al cleaning optimization
- Maximize device yield
- Optimize throughput

IEEE

General Process Parameters for Al-Ge Bonding

- Temperature: 420C-450C
- Bond Force: 15– 50 kN
- Bond Time : 3–30 minutes

Al-Ge Patterning, Alignment & Bonding

The process includes a mirrored-pair mask design, lithography, etch, pattern alignment and eutectic metal bonding:

Metal Seal Ring Design

Phase A- Images showing Seal Rings of Varying widths (30um to 120um) on both Al and Ge wafers

Phase B/C -wafer design: 50um Al and 70um Ge seals

1	Introduction
2	Metal Based Wafer Bonding
3	Al-Ge Eutectic Bonding
4	Experimental Data and Results

Bond characterization- blanket wafers SAM analysis

SAM images of a blanket Al-Ge bonded pairs showing a void-bonding. The two artifacts at 6'o clock and 12'o clock position are from wafer clamping for AI deposition during upstream processes

Phase A: Bond characterization – SAM Analysis of Patterned Al-Ge Bonds

EEE

4

SAM images of a patterned AI-Ge bonded pairs at 425-445°C/ 30-40kN/ 9 minutes

Bond characterization:- Post Bond EEEE IR analysis (optimized process)

Left Seal rings at 50X, 100X and 200X

Transmission IR images from an offline IR microscope shows seal-rings from aligned and bonded AI-Ge substrates bonded with an optimized process

Bond Characterization

Post SAM Analysis, razor blade testing of was conducted to correlate SAM data with bond strength testing (done by inserting a razor blade at the bond interface)

SAM Image of aligned and bonded AI-Ge pair

Razor blade testing followed by optical microscope inspection showing strong bond interface

Bond characterization: Shear strength IEEEE

Al transferred over to Ge side. Failure at either Al/Ox interface

Bond characterization: SEM analysis of Bonded Wafers

- Bond interface cannot be identified due to good eutectic melt
- AI-Ge phases are nearly pure (low solid solubility)
- Strong mechanical properties at the interface (Fracture energy in excess of 40J/m²)

Plan SEM view of Al-Ge seal ring showing microstructure of Al-Ge eutectic bond at 450C. Germanium dendrites (light) within an Aluminum matrix

Cross-section SEM of the bonded pair section showing voidfree eutectic AIGe alloy at the bond interface

AES Spectra for Al-Ge Bonded Pair

 Φ

10.0kV 10.0kX

1.0µm

Contents

5	Concluding Remarks
5	
4	Experimental Data and Results
3	AI-Ge Eutectic Bonding
2	Metal Based Wafer Bonding
1	Introduction

Concluding Remarks

- Evolution from Frit to Metal-Eutectic Wafer Bonding
- Focus on Al-Ge eutectic and Sn based TLP Bonding
- Automated bond cluster optimized for Process proven in HVM (cap fly off < 2%, yield >95%, TPuT 5.5W/Hr)
- Ongoing Integration of Al-Ge bond process with TSV processes for wafer stacking
- Ongoing characterization of resonant structures to achieve better Q factor and higher cavity vacuum levels (for applications such as low frequency gyros etc)

SEM x-section of a triple stack bond showing a fusion bonded pair bonded to a third wafer using AI-Ge

Thank you -