High-Definition Multi-Room DVRs and HDDs

Donald Molaro and Jorge Campello
San Jose Research Center
Hitachi GST
What is difference between DVR and VCR?

- Digital vs analogue
- Easy to program? What about VCR+?
- Tape vs HDD
 - No need to change the tape
 - Stores many weeks
 - Not for archival
 - Simultaneously view and record.
 - Record multiple
 - Playback multiple
Requirements For Multi-Room PVR Systems

Emerging Multi-Room PVR

- At least one HD display
- Main STB with 4 HD tuners
- High Definition Satellite or Cable
- Living Room
- Bedroom
- Kid’s Room
- Kitchen
- Client boxes
- Home Cable Wiring

System Requirements

- Support for 4 write streams and 4 read streams, with trick play capability (fast forward and rewind) on each of the read streams.
- Additional support for other “best effort” applications such as: EPG, photo browsing, music playlists, web browsing, CD ripping, IP TV downloads, etc.
QoS For AV Streaming Applications

Input AV Streams

Application Layer

Real Time (AV) Applications

Write Buffers

Output AV Streams

Real-Time (AV) Data

Read Buffers

Best Effort (IT) Applications

(GUI, EPG, photo browsing, music playlists, etc.)

Other IT Data

Best Effort (IT) Data

File System

OS Scheduler

ATA7 Device Driver

ATA7 Hard Disk Drive

Nomenclature

- Real-Time Traffic
- Best Effort Traffic
Part II: HDD Overview

- HDDs as Block devices
- Sequential access and skew
- Zones and data layout
- Command Queues
- Write Cache
- Read Cache
Magnetic Recording: Longitudinal

Write Current Waveform

Read-Back Signal

Medium Direction of Travel

Write Head

Read Head

Magnet

Transition

Recording Medium
Magnetic Recording: Perpendicular

Write Current Waveform

Read-Back Signal

Medium Direction of Travel

Write Head

Read Head

Recording Layer

Soft Underlayer
• HDDs are “block devices”

• Access requests are for blocks of data, as opposed to individual bits or bytes.

• HDD blocks are called sectors and are (almost always) 512 bytes in size.

The sectors in the HDD are represented by a linear address space. The addresses are often called Logical Block Address or LBA.
Ordering the Tracks

OD ID
HDDs are designed to optimize sequential access. This is done by varying the position of the first sector in the track by an amount (called skew) proportional to the time required to switch tracks.

Example: (these are illustrative simplified numbers for easy computation)
One revolution -> 8ms (7500 rpm).
Track switch time -> 1.6-1.9 ms. Use 2ms = ¼ rev.
Track size -> 1000 sectors.
Sequential Access

Data output vs time

Time for 1 revolution

Track skew time

Data in one track

Read-back

Sustained

\[R = \frac{500\, KB}{8\, ms + 2\, ms} = 50\, MB/s \]
HDD Throughput Bound

In an HDD, the number of sectors in a track varies from zone to zone. Hence, for each zone, z, we have \(S(z) \) sectors per track and therefore

\[
R(z) = \frac{S(z)}{Tr + Ts (1)}
\]

The average data-rate for the entire HDD with \(N_z \) zones and \(C(z) \) cylinders in zone \(z \) we have

\[
\overline{R} = \frac{1}{D} \sum_{i=1}^{N_z} C(z_i) R(z_i) = \frac{\sum_{i=1}^{N_z} C(z_i) S(z_i)}{T_r + T_s (1)}
\]

\[
\therefore \overline{R} = \frac{\overline{S}}{T_r + T_s (1)}
\]

where \(\overline{S} \) is the average # of sectors per track and \(D \) is the total # of cylinders.
HDD Throughput Bound

We will be interested in the special case where all the zones have the same number of cylinders:

\[C(0) = C(1) = \cdots = C(N_z - 1) = C \]

For this special case

\[\bar{S} = \frac{\sum_{i=1}^{N_z} S(z_i)}{N_z} \]

For a system with \(M \) streams, the per stream data-rate bound will be

\[R_M^* = \frac{\bar{R}}{M} \]
Range of HDD Sustained Data-Rates for an Example 400GB HDD

The diagram illustrates the range of HDD sustained data-rates for a 400GB HDD. The data-rate is measured in Mb/s and is shown as a function of zone number. The plot shows two lines:

- **Zone sustained data-rates**: Represented by a blue line, indicating the data-rate for each zone.
- **Average data-rate R**: Represented by a green line, indicating the average data-rate across all zones.

The data rates decrease as the zone number increases, reflecting the typical behavior of HDDs where data rates are slower further away from the spindle.
The total time for a read command can be expressed as

$$T_c = \text{CMD Setup} + \text{Seek} + \text{Rotational Latency} + \text{Read} + \text{Re-read}$$
Command Queuing

Command Queue
- Command 1
- Command 4
- Command 3
- Command 2

HDD

Main Memory
- Command 1
- Command 2
- Command 3
- Command 4

Host
- Data 1
- Data 2
- Data 3
- Data 4
Most modern 3.5” HDDs have queues that can be used to improve throughput. Imagine that the commands are received in sequential order, that is, command 1, command 2, command 3 and command 4. Only the commands themselves are sent to the HDD. The data for any write commands is still in the host waiting for the command to start executing.

The figure below illustrates the execution of the commands in the order in which they were received, that is, it is a FIFO queue.
In order to improve throughput, the HDD typically will reorder the execution of the commands in an attempt to minimize the overall time required to execute all the commands.

The figure below illustrates the execution of the commands in the throughput optimized order.
Write Cache

- Write cache functions similar to a Queue in some respects, but is completely transparent to the host.

- When write cache is enabled,
 - Write commands cause the data to be transferred to the HDD’s buffer and the command returns “immediately”.
 - Several commands can be queued up in the HDD’s write cache.
 - After some a number of commands have been accumulated, or there is some free time, the HDD transfers (de-stages) the data to the disk.
 - The Host system has no control over the time when this will happen, other than being able to send a flush cache command that forces the HDD to de-stage the pending write commands immediately.
 - The write commands can be (and often are) reordered in order to improve throughput.
The read cache in an HDD serves the same purpose as the memory caches in microprocessors. In addition, the cache in the HDD is also used for some opportunistic predictive reading.

As shown in the figure below, the HDD can read (configurable) a certain amount of data located immediately before and after the data being requested.
Part III: HDD Performance Issues for AV Applications

- Measures of Performance
- Parameters affecting performance
- Methods of access and their impact on performance
- Methods of data storage allocation and impact on performance
DVR vs PC

Requirements from a user’s point of view:

<table>
<thead>
<tr>
<th>HDD Parameter</th>
<th>PC</th>
<th>DVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>How much data (files, programs) can I store?</td>
<td>How many videos can I store?</td>
</tr>
<tr>
<td>Performance</td>
<td>Average data-rate. Application load time</td>
<td>How many streams can it support?</td>
</tr>
<tr>
<td></td>
<td>Time to boot the OS.</td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>Likelihood of data loss.</td>
<td>How often visible glitches occur?</td>
</tr>
<tr>
<td></td>
<td>Likelihood of complete drive failure.</td>
<td></td>
</tr>
</tbody>
</table>

Fixed hard constraints

Measure of Quality
Example: How does the system behave in terms of rpm?

Glitches-per-hour vs rpms chart showing:
- Quality Constraint line at 10^-3
- 5 streams line
- 4 streams line
- 3 streams line

Legend:
- 5 streams
- 4 streams
- 3 streams
- Quality Constraint
Depending on how files are stored, the stream might get “stuck” at the ID where it is more vulnerable to glitches.
Normal operation

A glitch occurs and we consume 1 track of redundancy.

Normal operation

Recovery period
HDD Parameters Affecting Performance

Parameters affecting mainly throughput:
- RPM
- Seek curve

Parameters affecting mainly Latency / consistency of response:
- Defect management
- Error recovery algorithms

Parameters affecting both throughput and Latency / consistency of response:
- Write cache
- Queuing
- Read cache
- Physical layout
File System and Performance

Storage Device

HDD

File System

File 1
- File 2
- File 3
- File 4
- File 5
- ...

1 5 3 ...

Stream Buffers

Write Buffers

Metadata, File Structures and Interface

- How should files be represented.
- Allocation unit size
- Size of block access

Read Buffers

Data Layout

- How to organize data on the surface of the disk.
- For each new file, decide which free blocks to use for storing the new file.

Scheduling Algorithms

- Determines in what order access requests should be satisfied.
- Algorithms will control the trade-off between QoS and throughput.

Metadata, File Structures and Interface

- How should files be represented.
- Allocation unit size
- Size of block access
Time Breakdown (7200 RPM) → Simulation

(3 streams HDTV)

Block Size = 1024K

Block Size = 64K
HDTV 2 Streams ID

- Rpm 3600, Sb = 512(sectors)
- Poor performance
- High number of glitches
HDTV 2 Streams OD

- Rpm 3600, Sb = 512(sectors)
- Reasonable performance
- No Glitches
- Rpm 3600, Sb = 512(sectors)
- Very Poor performance
- Very large number of glitches
Scheduling Algorithms

- In order to maximize throughput stream requests can handled in the order that minimizes the intra-stream switching time.
 - That is, the block requests are sorted in terms of LBA and accesses are made in this order.
 - This scheduling is called SCAN.
 - The latency for a particular stream can be very large and therefore large buffers may be required.

- In order to minimize latency requests can be handled in the order of priority
 - That is, the stream who’s buffer is about to overflow (underflow) is serviced first, and so on.
 - This is called EDF (earliest deadline first).
 - Since large seeks can be necessary for guaranteeing low latency, this solution may have low throughput.

- There are several algorithms in between the two extremes.
 - SCAN-EDF
 - Group Sweep Scheduling (GSS)
 - Round-robin

- ATA-7 can help handle mixed traffic
 - Put deadlines for best-effort traffic so as to prevent it from disrupting real-time traffic.
 - Put deadlines in real-time traffic to avoid one stream depleting all streams.
Worst-case Analysis: HDD Throughput Upper Bound

In an HDD, the number of sectors in a track varies from zone to zone. Hence, for each zone, \(z \), we have \(S(z) \) sectors per track and therefore

\[
R(z) = \frac{S(z)}{Tr + Ts (1)}
\]

The average data-rate for reading the entire HDD from OD to ID. If \(N_z \) is the number of zones and \(C(z) \) the # of cylinders in zone \(z \) we have

\[
\overline{R} = \frac{1}{D} \sum_{i=1}^{N_z} C(z_i)R(z_i) = \frac{\sum_{i=1}^{N_z} C(z_i)S(z_i)}{D \overline{S}} = \frac{\overline{S}}{Tr + Ts (1)}
\]

where \(\overline{S} \) is the average # of sectors per track and \(D \) is the # of cylinders.

The data-rate of the slowest zone (ID) is often a practical bound on the performance of several systems.

\[
\overline{R}_{ID} = \frac{S(z_{ID})}{Tr + Ts (1)}
\]
Worst-case Analysis: HDD Throughput “Lower” Bound

If we use the HDD in a “regular” file system, but with the read/write requests always for \(S_B \) bytes, then the following worst-case data-rate is achieved

\[
\overline{R}(S_B) = \frac{S_B}{T_{CMD} + T_s(d_{z_0}) + \tau + \frac{1}{2} \left(\frac{S_B}{R(z_0)} + \frac{S_B}{R_{N - 1}} \right)}
\]

where

\[
z_0^* = \arg \max_{z_0 \in \{0,1,\ldots,N - 1\}} 2T_s(d_{z_0}) + \frac{S_B}{R_{z_0}}
\]
Performance Lower Bound for 8 Streams on an Example 400GB HDD
For desktop HDDs, reliability is usually specified through:
- A Hard Error Rate (HER).
- A Mean Time Between Failures (MTBF).

The hard error rate indicates the probability of losing a small amount of data (usually a sector) after completion of an error recovery procedure. e.g. One error per 10^{14} bits read after ERP.

The MTBF specifies the catastrophic failure rate for a population of HDDs.

Another important metric for AV performance is the command completion time distribution.
- IT applications require good average performance, but can have a wide variance in command completion times.
- AV applications may trade off average performance to achieve more consistent response times.
Sector failure rate on the first read depends on seek settling time. The principal failure mechanism on the 1st read is typically not repeatable (e.g. TMR), so after the second read the error probability is roughly

Sector hard error rate (usually caused by scratches, HDI events, etc.) must be better than 10^{-11}. (one error in 10^{14} bits read)

Note: This is an illustration only, not real
Mean Time Between Failure (MTBF)

- What does it mean to have a MTBF of 1.2M hours (137 years)?
- During the period of useful life of the HDD, we assume an exponential failure density function $f(t) = \lambda \exp(-\lambda t)$ with a constant failure rate λ.
- The average time to failure is MTBF = $1/\lambda = 1.2M$ hours.
- In reality, we do not expect the HDD to be in use for 1.2M hrs, so the MTBF is used to provide the expected rate for a large population of HDDs.
- For example, with 1000 HDDs with 1.2M hour MTBF running for one year, the expected number of failures is $1000 \times 365 \times 24 / 1.2M = 7.3$.

Reliability "Bathtub" Curve

![Reliability Bathtub Curve Diagram]

- early failures
- random failures
- wearout failures
- useful life
- HDD test
- failure rate
- Time

© 2005 Hitachi Global Storage Technologies
Additional power states:

- Unload Idle
 - 7200 rpm, head unloaded
 - Recovers in ~0.7 sec.
- Low RPM Idle
 - 4500 rpm, head unloaded
 - Recovers in ~4 sec.

Quiet seek mode saves about 2.4 W.

SATA power consumption is worse than PATA by about 0.6W. Expected improvement through SATA link power management.

Thermal management will impact HDD reliability.

- Thermal specification typically 5 to 55 degrees C (operating).
 Top cover can be at 60 degrees C.
- Mounting and airflow are extremely important.
HDD Acoustics Measurements

Anechoic sound chamber

Sound intensity mapping locates noise

Scanning LDV for mode analysis

Binaural head for sound quality
HDD Acoustics Specifications

Typical HDD Acoustic Specifications (A-Weighted Power)

<table>
<thead>
<tr>
<th></th>
<th>Mobile</th>
<th>Desktop</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>23 dBA</td>
<td>31 dBA</td>
<td>34 dBA</td>
</tr>
<tr>
<td>Seek</td>
<td>27 dBA</td>
<td>35 dBA</td>
<td>44 dBA</td>
</tr>
</tbody>
</table>

Typical Sound Levels (A-Weighted Pressure)

<table>
<thead>
<tr>
<th>Acoustic Environment</th>
<th>Sound Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold of hearing</td>
<td>0 dBA</td>
</tr>
<tr>
<td>Rustling Leaves</td>
<td>10 dBA</td>
</tr>
<tr>
<td>Quiet Library</td>
<td>35 dBA</td>
</tr>
<tr>
<td>Business Office</td>
<td>65 dBA</td>
</tr>
<tr>
<td>Busy Street</td>
<td>85 dBA</td>
</tr>
<tr>
<td>Threshold of Pain</td>
<td>140 dBA</td>
</tr>
</tbody>
</table>

In a hemispheric anechoic chamber at 1m from the noise source, subtract 8 dBA to get the sound pressure.
Sound Quality

- Current specification uses A-weighted sound power with a tone penalty.
- However, customer preference is more dependent on perception of disk drive noise rather than simply volume.
- Sound quality (SQ) addresses many aspects of acoustic annoyance: loudness, tones, sharpness, roughness, etc.
Quiet Seek

- Depending on the specific product, quiet seek provides an improvement of up to 5 dBA in emitted sound power compared to performance seek mode, in addition to a significant improvement in sound quality.

- Use of quiet seek may also reduce power consumption by ~2.5 W compared to performance seek.

- Quiet seek also increases full volume seek times by about a factor of two.

- For AV applications, with large block IOs, quiet seek provides a significant benefits with minimal reduction in performance.
System Level Acoustics Measurements

- Incorrect mounting of the HDD can cause the system box to act as a resonator for the HDD acoustic noise.
- Careful mounting and system design are required in order to create a low noise system.

Example: Impact of a system box on sound pressure level.
Measurements from typical CE devices in a hemi-anechoic chamber.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sound Power (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>background noise level</td>
<td>26.2</td>
</tr>
<tr>
<td>CD player (playing)</td>
<td>26.4</td>
</tr>
<tr>
<td>DVD player (playing)</td>
<td>27.5</td>
</tr>
<tr>
<td>VCR (playing)</td>
<td>36.9</td>
</tr>
<tr>
<td>PVR (playing)</td>
<td>37</td>
</tr>
<tr>
<td>PVR (rewinding at 15x)</td>
<td>37.3</td>
</tr>
<tr>
<td>PVR (skipping at 300x)</td>
<td>38.2</td>
</tr>
<tr>
<td>VCR slow FF (from play)</td>
<td>40.8</td>
</tr>
<tr>
<td>small cheap TV</td>
<td>44</td>
</tr>
<tr>
<td>VCR fast FF (from stop)</td>
<td>55.7</td>
</tr>
</tbody>
</table>

Typical desktop HDD
30-35 dBA
Performance For AV Streaming Applications

- New Emerging High Performance Multi-Stream Applications
 - Multi head DVR systems.
 - DLNA compliant Digital Media Servers.
 - AV streaming combined with IT traffic.

- Performance Metrics:
 - Stream Performance: How many streams can you support, at what bit rate, with what trick-play features?
 - Quality of Service: How frequently do your streams get interrupted (i.e. how often do video glitches occur in the system)?

- Objectives:
 - Minimize the probability of stream buffer underflows and overflows.
 - Achieve a reasonable throughput & latency tradeoff with IT traffic, without allowing the IT traffic to interfere with AV traffic.
 - Increase system margin to allow the use of quiet seek.
ATA-7 AV Streaming Commands

- **Specify Time Limits on Commands**
 - Can either abort or suspend the command if the time limit is not met.
 - If the command is suspended, it can be resumed at a later time.

- **Read Continuous Mode**
 - The HDD will attempt to read data once, and will return with a list of sectors which it read and which it failed to read.
 - The system can decide whether to attempt to re-read data which was missed on the previous attempt.

- The commands provide a mechanism for ensuring Quality of Service (QoS) in streaming applications.
QoS For AV Streaming Applications

Application Layer

Real Time (AV) Applications

Write Buffers

Read Buffers

Input AV Streams

Output AV Streams

Other IT Data

File System

Real-Time (AV) Data

Best Effort (IT) Data

OS Scheduler

Command Scheduler

ATA7 Device Driver

ATA7 Hard Disk Drive

Nomenclature

- Real-Time Traffic
- Best Effort Traffic
All data (AV content and non-AV data) is stored in encrypted form.

Non AV-data may include:
- Encrypted digital rights information (licenses, permissions, pay-per-view credits).
- Other types of state information, depending on STB features.
- Software modules and system configuration data.

Security concerns
- Attacker may attach HDD to a PC and read or write all of the data.
- Easy to mount offline attack against CA scheme.
- May attack state information on the HDD.

Requirements
- Mutual authentication between HDD and host, and secure session.