

The Computational Array Camera

Dan Lelescu

Chief Imaging Scientist

Pelican Imaging Corporation

September 23, 2014

The Camera – past and present

Modern camera evolution

Current consumer camera

Some "computational" features can be added w/o HW modifications (e.g., HDR, video super-resolution, generating panoramas)

The theoretical **plenoptic camera** captures all information at a point in space

Practical, lower-dimensionality computational camera instantiations

Lytro Illum

Raytrix R11

Pelican Imaging

R&D scope for computational imaging

- Plenoptic image acquisition
 - Camera design, calibration, syncronization
 - Space/time sampling, optimal sampling (aliasing?)
 - Typically, huge amount of data are generated

Plenoptic processing

- Reconstruction of imaged scene data, plenoptic representations for specific purposes, feature generation and associated apps (e.g., depth map and usage)
- Coding (for storage, transmission, display)
- Formats
- Plenoptic signal communication
 - Transport issues (e.g., error resilience) specific to this domain
 - Bandwidth!

Rendering/displays, printing

- Display devices (to take advantage of new imaging capability)
- 3D printing

- The plenoptic function
- Computational cameras as codecs
- > The Pelican Imaging array camera

The plenoptic function and its parameterizations

The plenoptic function

> The *plenoptic function* was introduced formally in [Adelson 1991].

- Describes all light information collected at a point in space-time
- ➤ The plenoptic function is originally a 7D function,
 - $f(V_x, V_y, V_z, \Theta, \Phi, \lambda, t)$

where

- V_x, V_y, V_z viewpoint coords.
- Θ, Φ ray direction
- λ wavelength
- t time
- By fixing various parameters in the plenoptic function, one obtains more restrictive representations.

Of particular interest: 4D Parameterization of Light Field

- Integral photography [Lippmann 1908]
- Light fields are 4D parameterizations of the plenoptic function
 - Light Fields [Levoy 1996] and Lumigraphs [Gortler 1996]: a ray is indexed by its intersection with two parallel planes.

 Assumption of space free of occluders (to reduce from 5D to 4D); six pairs of planes surrounding the convex hull of the object being imaged

4D Light Field capture

Spatio-angular capture, whether

© Pelican Imaging 2014. All rights reserved.

> of the main lens image, using a microlens array (like a relay-lens system) near sensor

➤ of the scene, using lens arrays

Brief overview of computational cameras* * Extensive literature available, this is a sparse sampling

Credit: http://www.instructables.com/id/DIY-Camera-Array-1-Computational-Photography-Prim/

Computational camera as codecs

Optics and/or camera structure (e.g., case of arrays) "encode" the imaged scene in various ways

- Typically, the closely-adapted digital processing "decodes" the information to produce the desired features of the computational camera
- (As usual, an image/video codec may be inserted between the two, esp. given the volume of data that may be generated).

Computational camera codecs (contd.)

Aspects of such devices can just as well be cast in the language of information theory

≻ E.g.,

- > what constitute "good" views of the scene?
 - Viewpoint entropy [Vasquez 2001],

$$I = -\sum_{i=1}^{n} \frac{A_i}{A_t} \log \frac{A_i}{A_t},$$

where n is the number of facets of objects seen in the scene,

 A_i is the projected area of face *i* over the sphere centered at viewpoint

 A_t is the total area of the sphere

- how "efficient" is the information transfer across acquisition & processing
- efficient source coding of generated data, e.g., MPEG-4 Part10 predictive Multiple View Coding (MVC), or "just-in-time" (JIT)-decode representations (e.g., [Lelescu 2004])

The "encoding" of acquisition: Approaches [1]

- Object Side Coding
 - Involves an optical element attached to a conventional lens
 - Examples include:
 - Catadioptric Lenses (Lens + mirrors) [Chahl 1997, Baker 1999, Lelescu 2002]
 - Bi-prism Stereo [Lee 1998]

Pupil Side Coding

- Involves an optical element attached to the pupil plane of conventional lens
- Examples include:
 - Cubic Phase Plates [Dowski 1995]
 - Coded Aperture [Levin 2007]

The "encoding" of acquisition: Approaches [2]

Focal Plane Coding

- Involves an optical element placed close to the sensor/detector
- Examples include:
 - Pixel-wise control of exposure [Nayar 2003]
 - Use of microlens arrays [Adelson 1992], [Ng 2005], [Lumsdaine 2009], [Georgiev 2010],
 - Attenuation masks [Veeraraghavan 2007]

Illumination Coding

- Spatial or temporal control of flash to code captured images
- Examples include:
 - Robust 3D using space-time stereo [Zhang 2003]
 - High speed 3D reconstruction using structured light, e.g., [Gong 2010]
 - Kinect [Microsoft]

The "encoding" of acquisition: Approaches [3]

P

- Camera clusters and arrays
- No optical coding need be involved, but "coding" occurs due to information capture across individual cameras
 - Additional coding may involve high-frequency scene information captured in phase-offset aliased array images

Examples include:

- Multi-baseline stereo [Okutomi 1993]
- TOMBO array [Tanida 2001]
- Flexible Camera Arrays [Nomura 2007]
- Stanford Camera Array [Wilburn 2005]

Pelican Imaging Camera Array [Venkataraman 2008]

The encoding of acquisition: A few category examples

Object Side Coding

- ≻ E.g.,
 - Bi-prism stereo [Lee 1998]

Catadioptric omnidirectional capture and processing [Lelescu 2002]

Pupil Side Coding

- Extended depth of field (EDOF) through wavefront coding, e.g., [Dowski 1995]
 - A standard optics is modified by a phase mask
 - The phase mask alters the wavefront such that point-spread function does not change appreciably
- Phase-mask optics "coupled" with a deconvolution process enable a large-DoF image recovery, since the blur kernel is largely invariant with distance, e.g., on-sensor EDOF solution [Lelescu 2009].

of the camera

- Creates a coded aperture
- The aperture filter can now discriminate between depths

Pupil Side Coding [Levin 2007]

- Recover the scale of the blur which \geq allows one to
 - Determine the depth (since the scale of the blur is dependent on depth)
 - Recover the image by inverting the blur at each depth level

(a) Conventional

(b) Coded

Figure 3: Left: Top, a standard Canon 50mm f/1.8 lens with the aperture partially closed. Bottom, the resulting blur pattern. The intersecting aperture blades give the pentagonal shape, while the small ripples are due to diffraction. Right: Top, the same model of lens but with our filter inserted into the aperture. Bottom, the resulting blur pattern, which allows recovery of both image and depth.

Focal Plane Coding [Adelson 1992]

By placing a lenticular array close to the sensor plane of the main lens, the resulting 'plenoptic' camera provides depth cues

b)

FIGURE 1. In a conventional camera, only a 2-D image is captured at the sensor plane. Because of this, it is impossible to tell whether the point being imaged is further from or nearer to the image plane

FIGURE 2. In a plenoptic camera, an array of microlenses is used to sample the angular information of light rays. When the object is out-offocus point, a blurred spot is formed on the microlens array, but depending on the incident angle of the light, different pixels will be illuminated.

Focal Plane Coding (contd.)

- Spatio-angular sampling using a microlens array: Plenoptic camera [Ng 2005]; Focused plenoptic camera [Lumsdaine 2009], [Georgiev 2010]
 - Differences in focusing the main lens image and the microlenses → differences in reconstruction and render resolution
- ➢ For example, in plenoptic camera [Ng 2005]
 - Image: integrate within microlens sub-images
 - Refocusing the image:

© Pelican Imaging 2014. All rights reserved.

image plane

array

Camera clusters – Virtualized Reality [Rander 1997]

- A Gantry (or Dome) is built to house cameras at different points of view
- The cameras capture multiple points of view
- Synthesize intermediate views from positions on the gantry, or from points inside the convex hull of the gantry

PI Computational Array Camera (PiCam)

Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee, P., Mullis, R., Nayar, S. (2008). PiCam: an ultra-thin high performance monolithic camera array. In *ACM Trans. Graph. 32(6):166*.

What can an array camera do?

Features

- Small form factor (very thin, e.g., 3.5mm) computational camera
- Restore higher resolution imagery from low-resolution input super-resolution (SR) – a balanced angular vs. spatial resolution (in 4D)
- Virtual viewpoint (whether native res., or further super-resolved)
- Dynamic focus; post-capture refocus/synthetic aperture; re-lighting, etc.
- Natively co-located (RGBZ) depth map
 - Consumer depth-driven applications, depending on design
- Video from an LF camera, can use depth features for applications
- The balancing of strengths in the multi-feature "star-graph" is part of design constraints. Some trade-offs have to be made (no free lunch)
- Camera instantiations can be built, with different combination of features and trade-offs.

Building computational cameras: stepping stone

- Computational camera design typically more complex than traditional camera
- Level 1: proof of concept design/simulations, more limited, controlled-condition testing
- Level 2: physical emulation or build, and more extensive testing, but not "consumer-grade", e.g.,
 - small number of cameras built, may use manual or per-image/class tuning
 - manufacturing tolerances

Level 3: full-fledged camera module, meant for field operation, e.g.,

- large numbers of cameras built, extensive testing
- robustness is paramount, manufacturing tolerances
- stable adaptive tuning to practically uncontrolled imaging conditions
- (self-diagnosis/correction in the field)

Building computational cameras (contd.)

- New HW challenges for an array camera, e.g.,
 - Performance and tolerances of components
 - New composite metrics, and tolerances for the array
 - Alignment techniques
- Critical to design jointly the Encoder (acquisition HW) and Decoder (digital processing)
 - Approach/algorithms/assumptions that will function within design constraints, and achieve desired functionality
 - Develop solutions from classes of advanced statistical signal processing approaches (esp. able to account for modeling/characterization uncertainties)

What does the array camera "encode"?

- Geometry and intensity information in 4D (u,v,s,t):
 - Depth information (disparity, in image space)
 - Decode: Geometric registration and parallax detection
 - High frequency information above sensor Nyquist (if so designed) in the form of phase-offset aliased input data → super-resolution decoding
 - Can be used (even at varying strength) to complement other features, e.g., refocus, virtual view, etc.
 - Dynamic range information (exposure bracketing in array)
 - For "single shot" HDR
 - Decode: HDR reconstruction

- PiCam HW ("encoder"): Optics, sensors (and module integration)
- PiCam SW ("decoder") Core processing
 - Parallax detection
 - Super-resolution
- PiCam SW applications

Encoder: Camera module structure

Encoder: Sample design considerations:Optics

- > Each channel can be designed for a narrower spectral band
 - Small bandwidth less achromatization needed, or better performance with the same effort
 - Separated color channels each channel can be focused properly
- Small optical format reduces aberrations and influence of form errors

FUJIFILM CFA

Wavelength (nm)

Example: monolithic lens array

© Pelican Imaging 2014. All rights reserved.

Encoder: Sensor Design

- ➢ In the case of a Bayer-pattern, the CFA is deposited on the pixels.
- Once each focal plane is monochrome the filter can be moved from sensor to the lens !
- Benefits:
 - Cheaper lithography & material
 - Reduced pixel stack height → increased pixel MTF (less crosstalk)

"Decoding" depth: Parallax detection & regularization

- First level: joint (multi-camera) parallax detection, multi-channel (e.g., RGB)
 - Spatial arrangement of Color Filters (cameras) very important (occlusion handling)
- Second level: refinement through a "visibility processing" reasoning
 - Basically, verify validity of initial result by testing the obtained geometry against array constraints
- Saves more geometry {u,v,s,t} information for the subsequent "uncertainty processing" (or hypothesis testing) in the MAP reconstruction
- For certain applications, a further depth –map regularization may be performed to fill in missing data.

Example: Depth map (w/ confidence map)

Decoding: Recovering resolution

- > The resolution is a function of multiple parameters, including
 - Optical Format of each camera in array
 - Number and arrangement of cameras
 - F/# (determines diffraction limit), aberrations, and resulting OTF of optics
 - Pixel size (sampling rate, aliasing)

- > Important to model, characterize, or determine "degradations":
 - multiple blurs (e.g., optics, sensor)
 - geometry (e.g., scene-independent distortions, scene-dependent parallax)
 - Noise (both imaging, and impact of cumulative estimator noise)

Trust (to some degree) but verify:

■ The processing design starts with built-in assumption of uncertainties → most appropriate statistical models adopted → toward robust functionalities

Decoding: Super-resolution reconstruction

- Leverage Bayesian philosophy
 - No "turn-key" solution; needs dedicated derivations
- > Probabilistic models incorporate general, and system-specific priors
 - Optics characteristics e.g., PSFs, geometry
 - Sensor e.g., MTF, Noise
 - Array geometry
- A MAP (maximum a-posteriori) restoration approach provides a powerful unified framework for processing
 - Addresses uncertainty from prior stages (e.g., parallax, normalization)
 - Stabilizes solution
- Cross-channel fusion of Red/Blue channels, along with selective transfer of weighted MAP-gradients from Green
 - Could optimally be done "inside the loop", but more expensive

© Pelican Imaging 2014. All rights reserved.

"Decoder": Reconstruction animation

PiCam: More examples and applications

Reconstruction

Reconstruction

Single subarray low-res image

Super resolved image

Reconstruction (indoor, higher noise)

Reconstruction (far)

Depth map + regularization (outdoor depth)

Input Image

Regularized Depth

© Pelican Imaging 2014. All rights reserved.

Applications: Refocus

Applications: Re-Lighting

Future applications: Close object scan

Summary

Computational cameras

- Can provide set of unique/interesting/useful features
- Ongoing efforts to bring them to consumer

> Array camera

- Core functionalities:
 - Provides depth
 - Higher-resolution than that of individual component camera
- Form factor adapted to application domain (including very thin, mobile form-factor camera)
- With higher computational budgets, more (or increased quality) features could be offered in an even small form factor.

More information at <u>www.pelicanimaging.com</u>

Thank you

References [1]

- [Adelson 1991] Adelson, E. H., Bergen, J. R. (1991). "The plenoptic function and the elements" early vision", *Computation Models of Visual Processing*, pp.3-20, MIT Press.
- [Adelson 1992] Adelson, E. H., Wang, J. Y. A. (1992). Single Lens Stereo with a Plenoptic Camera. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 14*(2), 99–106.
- [Baker 1999] Baker, S., Nayar, S. (1999). A Theory of Single-Viewpoint Catadioptric Image Formation. *International Journal of Computer Vision*, *35*, 175–196.
- [Chahl 1997] Chahl, J.S., Srinivassan, M.V. (1997). Reflective Surfaces for Panoramic Imaging. *Applied Optics, 36*(31), 8275–8285.
- [Dowski 1995] Dowski, E. R., Cathey, W. T. (1995). Extended Depth of Field Through Wave-Front Coding. *Applied Optics*, 34(11), 1859–1866.
- [Georgiev 2010] Georgiev, T., Lumsdaine, A. (2010). Focused plenoptic camera and rendering. In *Journal of Electronic Imaging 19(2), 021106*.
- [Gong 2010] Gong, Y. & Zhang, S. (2010). Ultrafast 3-D Shape Measurement with an Off-the-shelf DLP Projector. *Optics Express 18*(19), 19743-19754.
- [Gortler 1996] Gortler Grzeszczuk, S. J., Szeliski, Cohen, M. F. (1996). "The Lumigraph", *Proc. ACM SIGGRAPH*, 43-54, ACM Press.
- [Isaksen 2000] Isaksen, A., McMillan, L., Gortler, S.J. (2000). "Dynamically reparameterized light fields", ACM SIGGRAPH 2000, 297-306.
- [Lee 1998] Lee, D.H., Kweon, I.S., Cipolla, R. (1998). Single Lens Stereo with a Biprism. Proceedings of the IAPR International Workshop on Machine Vision and Applications (MVA 1998), 136 - 139.
- [Lelescu 2002] Lelescu, D., Bossen, F. (2002). "Representation of panoramic and omnidirectional images", *Document M9273*, ISO/IEC JTC 1/SC 29/WG 11, Awaji, Japan.

© Pelican Imaging 2014. All rights reserved.

References [2]

- [Lelescu 2009] Lelescu, D., Venkataraman, K., Mullis, R., Rao, P., Lu, C., Chen, J., Keelan, B. (2009). "Focus recovery for extended depth of field mobile imaging", SPIE Photoelectronics, Image Processing, San Diego, California.
- [Lelescu 2004] Lelescu, D., Bossen, F. (2004). "Representation and coding of light field data", *Graphical Models*, vol. 66, 203-225.
- [Levin 2007] Levin, R. F., Durand, D., Freeman, W. (2007). Image and Depth from a Conventional Camera with a Coded Aperture. *ACM Transactions on Graphics, (also Proc. of ACM SIGGRAPH), 24*(3).
- [Levoy 1996] Levoy, M., Hanrahan, P. (1996). Light Field Rendering. *Proc. of ACM SIGGRAPH*, 31-42.
- [Lippman 1908] Lippmann, G. (1908). La Photographie Intégral. *Comptes-Rendus, 146*, Académie des Sciences, 446-551.
- [Lumsdaine 2009] Lumsdaine, A., Georgiev T. (2009) The focused plenoptic camera. *Proc. Int. Conf. on Computational Photography*,1-11, Stanford University.
- [Nayar 2003] Nayar, S. K., Branzoi, V. (2003). Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time. In *Proceedings of the IEEE International Conference on Computer Vision* (ICCV 2003), 1168-1175.
- [Ng 2005] Ng, R., Levoy, M., Br'edif, M., Duval, G., Horowitz, M., Hanrahan, P. 2005. Light Field Photography with a Hand-held Plenoptic Camera. (Technical Report CSTR 2005-02), Stanford, CA: Stanford Computer Science Department.
- [Nomura 2007] Nomura, Y., Zhang, L., & Nayar, S.K. (2007). Scene Collages and Flexible Camera Arrays. In *Proceedings of Eurographics Symposium on Rendering*.

References [3]

- [Okutomi 1993] Okutomi, M., Kanade, T. (1993). A Multiple-baseline Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4), 353–363.
- [Rander 1997] Rander, P., Narayanan, P.J., Kanade, T. Virtualized Reality: Constructing Time-Varying Virtual Worlds from Real Events. In *Proceedings of IEEE Visualization*, 277-283.
- [Tanida 2001] Tanida, J., Kumagai, T., Yamada, K., Miyatake, S. (2001). "Thin observation module by bound optics tombo: concept and experimental verification," *Appl. Opt.* **40**11, 1806–1813.
- [Vasquez 2001] Vasquez, P.-P., Feixas, M., Sbert, M., Heidrich, W. (2001). "Viewpoint selection using viewpoint entropy", *Proceedings of the Vision, Modeling, and Visualization (VMV) Conference.*
- [Veeraraghavan 2007] Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J. (2007). Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing. In ACM Transactions on Graphics (also Proc. of ACM SIGGRAPH), 26.
- [Venkataraman 2008] Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee, P., Mullis, R., Nayar, S. (2008). *PiCam*: an ultra-thin high performance monolithic camera array. In *ACM Trans. Graph.* 32(6):166.
- [Wilburn 2005] Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Levoy, M., & Horowitz, M. (2005). High Performance Imaging Using Large Camera Arrays. *ACM Transactions on Graphics (also Proc. of ACM SIGGRAPH), 24.*
- [Zhang 2003] Zhang, L., Curless, B., & Seitz, S.M. (2003). Spacetime Stereo: Shape Recovery for Dynamic Scenes. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, (CVPR 2003), 367–374.